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Abstract. Hausdorff continuous (H-continuous) functions are special interval-valued functions which
are commonly used in practice, e.g. histograms are such functions. However, in order to avoid
arithmetic operations with intervals, such functions are traditionally treated by means of corresponding
semi-continuous functions, which are real-valued functions. One difficulty in using H-continuous
functions is that, if we add two H-continuous functions that have interval values at same argument
using point-wise interval arithmetic, then we may obtain as a result an interval function which is not
H-continuous. In this work we define addition so that the set of H-continuous functions is closed
under this operation. Moreover, the set of H-continuous functions is turned into a linear space. It has
been also proved that this space is the largest linear space of interval functions. These results make
H-continuous functions an attractive tool in real analysis and provides a bridge between real and
interval analysis.

1. Introduction

Interval-valued functions of real arguments (briefly: interval functions) are special
case of set-valued (multi-valued) functions that are extensively used in rapidly
developed mathematical fields like non-smooth and nonlinear analysis [7], [9],
[10], [15], [18], differential inclusions [8], [14], [19], [22], convex analysis [15],
[25], optimization and (optimal) control theory [15], [22], and other applied areas.
These novel mathematical tools are typically based on the classical concept of
semi-continuous functions, which are real-valued functions, used to model non-
smooth and discontinuous functions considered as boundaries of set-valued map-
pings. However, in many situations it is more convenient to use simple interval
functions.
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Three concepts of continuity of interval functions play important roles in relation
to the above mentioned theories. In this paper we give a definition to these concepts,
briefly referring to them resp. as S-continuity, D-continuity, and H-continuity. We
show that these concepts of continuity can be obtained as a natural hybrid between
the concept of interval function and the well-known concept of semi-continuity
of real functions. The lower and upper semi-continuous functions have been well-
known at least since the beginning of the 20th century and are credited to Baire [11].
The normal upper semi-continuous functions were introduced in 1950 by Dilworth
in connection with the order completion of the lattice of continuous functions, see
[17]. The concepts of S-continuity and H-continuity are due to Sendov, see [26],
and have been motivated by applications to the theory of Hausdorff approximations
[27]. These concepts were also studied in [3] in connection with the analysis of
interval-valued functions. Pairing a lower semi-continuous function ƒ with an upper
semi-continuous function ƒ in an interval function [ƒ, ƒ] produces a completely new
concept from both algebraic and topological points of view, namely, the concept of
S-continuous interval functions. It is shown in [27] that the set of all S-continuous
functions on a compact subset of R is a complete metric space with respect to the
Hausdorff distance between their graphs and has the rare and particularly useful
property of being completely bounded.

Similarly to the concept of S-continuity, in the recent paper [1] interval functions
given by pairs [ƒ, ƒ] consisting of a normal lower semi-continuous function ƒ and
a normal upper semi-continuous function ƒ, such that ƒ ≤ ƒ, are introduced and
studied. Although Dilworth has not considered such functions as pairs (but only
individually), in honor of his contribution in this direction, we call these interval
functions Dilworth continuous, or shortly D-continuous.

In many situations, it is more natural to make use of simple interval functions as
a basic tool rather than real-valued functions. The recent publications [2] and [5]
present such situations. Moreover, it is shown in [4] that the traditional application
of real-valued semi-continuous functions to viscosity solutions of partial differential
equations can be replaced by H-continuous interval-valued functions, which offer an
instructive geometrical meaning to these solutions. In this work we further show the
advantages of classes of interval functions, namely, the classes of H-continuous and
D-continuous interval functions, with regard to their algebraic and inclusion isotone
properties when compared with the real-valued semi-continuous functions. Roughly
speaking, classical real analysis becomes more simple and complete through the
introduction of H-continuous and D-continuous interval functions.

H-continuous functions can be characterized by the property that they are
approximated arbitrary well from above and below by means of uniformly con-
tinuous functions [21]. Such a two-sided approximation generates in fact a contin-
uous (in the usual sense) interval function. Due to the minimality condition they
satisfy, the H-continuous functions are suitable for constructing interval enclo-
sures of real functions only in particular circumstances. However, we show that the
D-continuous functions, which can be obtained as pairs of H-continuous functions,
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provide interval enclosures to bounded sets of continuous real functions. Further-
more, the algebraic operations in the set of D-continuous functions are inclusion
isotone, a property of considerable importance in relation to interval computations.
This is one more motivation for these functions to be of special interest for interval
analysis.

H-continuous functions [27] may possess interval values for certain argu-
ments and comprise interval functions commonly used in the engineering prac-
tice like Heaviside functions (step functions) and histograms. How do we add two
H-continuous functions? One possibility is to add them point-wise using the inter-
val arithmetic addition. However, if the functions have interval values for the same
value of the the argument(s), then we may obtain as result an interval function,
which is not H-continuous. In addition, the value of the resulting function at some
points may have nothing in common with its values in neighboring points, violating
thus the main idea of continuity.

How should we define addition so that the set of H-continuous functions is
closed under this operation? Can we define addition, and also multiplication by
scalars, in such a way that the set of H-continuous functions is a linear space? Is
this space the largest space of interval functions which is linear? These are some of
the questions considered in the present paper.

The traditional definition of the operations between real functions is point-wise
on the domain of the functions. However, we show that this approach does not
help for keeping the linear structure of interval functions. In this paper we extend
the operations of the linear space of real-valued continuous functions to the largest
possible set of interval functions in a special way (not point-wise) so that the linear
space structure is preserved.

Hausdorff continuous functions are special class of Dilworth continuous interval
functions satisfying a minimality condition with respect to the inclusion of graphs.
These two concepts generalize the concept of continuity of real functions. It is
important to note that both concepts retain the property that a continuous function is
completely determined by its values on a dense subset of its domain. The definitions
of these concepts and related terminology are given in Section 2 and Section 3. In
Section 4 the operations of a linear space of functions are extended to Hausdorff
continuous functions. It is shown that, under suitable natural assumptions, the set
of Hausdorff continuous functions is the largest set of Dilworth continuous interval
functions which is a linear space. It is essential that the proposed addition of
Hausdorff continuous functions is such that at a point where both summands have
interval values the value of the sum is not determined by the values of the summands
only at that point but rather by the values of the summands in a neighborhood of the
point. In this sense our addition of interval functions is not point-wise. Some of the
results in Section 4 such as Theorems 4.2 and 4.3 are reported in [28] without proofs.
A full account of these results is given in Section 4. In Section 5 both operations
are extended further to the set of all D-continuous interval functions introducing on
it the structure of a quasi-linear space. A natural relationship between the addition
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of continuous functions and the addition of the interval hulls of sets of continuous
functions considered as D-continuous interval functions is also established in this
section.

2. General Setting

2.1. THE GRAPH COMPLETION OPERATOR

The real line is denoted by R and the set of all finite real intervals [a, a] =
{x : a ≤ x ≤ a} by IR = {[a, a] : a, a ∈ R , a ≤ a}. Given an interval
a = [a, a] ∈ IR , w(a) = a − a is the width of a, while |a| = max{|a|, |a|} is
the modulus of a. An interval a is called proper interval, if w(a) > 0 and point
interval, if w(a) = 0. Identifying a ∈ R with the point interval [a, a] ∈ IR , we
consider R as a subset of IR . We denote by A (Ω) the set of all locally bounded
interval valued functions defined on the open set Ω ⊂ R

n, that is,

A (Ω) = {ƒ : Ω → IR , ƒ-locally bounded}.

Since R ⊆ IR the set A (Ω) contains the set

A(Ω) = {ƒ : Ω → R , ƒ-locally bounded}
of all locally bounded real functions defined on Ω. Let us recall that a real function
or an interval-valued function ƒ defined on Ω is called locally bounded if for every
x ∈ Ω there exist δ > 0 and M ∈ R such that

|ƒ(y)| < M, y ∈ Bδ (x),

where Bδ (x) denotes the open δ-neighborhood of x in Ω, that is,

Bδ (x) = {y ∈ Ω : ||x − y|| < δ}.

Let D be a dense subset of Ω. The mappings I(D, Ω, ⋅), S(D, Ω, ⋅) : A (D) → A(Ω)
defined for ƒ ∈ A (D) and x ∈ Ω by

I(D, Ω, ƒ)(x) = sup
δ >0

inf{ƒ(y) : y ∈ Bδ (x) ∩ D},

S(D, Ω, ƒ)(x) = inf
δ >0

sup{ƒ(y) : y ∈ Bδ (x) ∩ D},

are called lower and upper Baire operators, respectively [11]. The mapping
F : A (D) → A (Ω), called a graph completion operator, where

F(D, Ω, ƒ)(x) = [I(D, Ω, ƒ)(x), S(D, Ω, ƒ)(x)], x ∈ Ω, ƒ ∈ A (D),

is well defined. In the case when D = Ω the sets D and Ω will usually be omitted
from the arguments, that is, we write

I(ƒ) = I(Ω, Ω, ƒ), S(ƒ) = S(Ω, Ω, ƒ), F(ƒ) = F(Ω, Ω, ƒ).
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The name of the operator F is derived from the fact that, considering the graphs
of ƒ and F(ƒ) as subsets of the topological space Ω × R , the graph of F(ƒ) is the
minimal closed set, which is a graph of interval-valued function on Ω and contains
the graph of ƒ.

Let ƒ ∈ A (Ω). For every x ∈ Ω the value of ƒ is an interval [ƒ(x), ƒ(x)] ∈ IR .
Hence, the function ƒ can be written in the form ƒ = [ƒ, ƒ] where ƒ, ƒ ∈ A(Ω)
and ƒ(x) ≤ ƒ(x), x ∈ Ω. The lower and upper Baire operators as well as the
graph completion operator of an interval valued function ƒ can be conveniently
represented in terms of the functions ƒ and ƒ, namely, for every dense subset D
of Ω:

I(D, Ω, ƒ) = I(D, Ω, ƒ),
S(D, Ω, ƒ) = S(D, Ω, ƒ),
F(D, Ω, ƒ) = [I(D, Ω, ƒ), S(D, Ω, ƒ)].

2.2. ISOTONICITY ISSUES

The graph completion operator is inclusion isotone with respect to the functional
argument, that is, if ƒ, g ∈ A (D), where D is dense in Ω, then

ƒ(x) ⊆ g(x), x ∈ D =⇒ F(D, Ω, ƒ)(x) ⊆ F(D, Ω, g)(x), x ∈ Ω. (2.1)

Furthermore, the graph completion operator is inclusion isotone with respect to the
set D in the sense that if D1 and D2 are dense subsets of Ω and ƒ ∈ A (D1 ∪ D2)
then

D1 ⊆ D2 =⇒ F(D1, Ω, ƒ)(x) ⊆ F(D2, Ω, ƒ)(x), x ∈ Ω.

This, in particular, means that for any dense subset D of Ω and ƒ ∈ A (Ω) we have

F(D, Ω, ƒ)(x) ⊆ F(ƒ)(x), x ∈ Ω. (2.2)

A partial order which extends the total order on R can be defined on IR in more
than one way. However, it was shown [2], [5], [13], [23], that it is particularly useful
to consider on IR the partial order ≤ defined by

[a, a] ≤ [b, b] ⇐⇒ a ≤ b, a ≤ b. (2.3)

The partial order induced in A (Ω) by (2.3) in a point-wise way, i.e.,

ƒ ≤ g ⇐⇒ ƒ(x) ≤ g(x), x ∈ Ω, (2.4)

is an extension of the usual point-wise order in the set of extended real valued
functions A(Ω).
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For the results discussed here it is important that the operators I, S and F are all
isotone with respect to the partial order (2.4), that is, for any dense subset D of Ω
and any two functions ƒ, g ∈ A (D)

ƒ(x) ≤ g(x), x ∈ D =⇒

⎧
⎪⎨

⎪⎩

I(D, Ω, ƒ)(x) ≤ I(D, Ω, g)(x), x ∈ Ω,
S(D, Ω, ƒ)(x) ≤ S(D, Ω, g)(x), x ∈ Ω,
F(D, Ω, ƒ)(x) ≤ F(D, Ω, g)(x), x ∈ Ω.

(2.5)

3. Continuity Concepts

3.1. DEFINITIONS

DEFINITION 3.1. A function ƒ ∈ A (Ω) is called S-continuous, if F(ƒ) = ƒ.

DEFINITION 3.2. A function ƒ ∈ A (Ω) is called Dilworth continuous or shortly
D-continuous if for every dense subset D of Ω we have F(D, Ω, ƒ) = ƒ.

DEFINITION 3.3. A function ƒ ∈ A (Ω) is called Hausdorff continuous, or H-conti-
nuous, if for every function g ∈ A (Ω) which satisfies the inclusion g(x) ⊆ ƒ(x),
x ∈ Ω, we have F(g)(x) = ƒ(x), x ∈ Ω.

The three concepts defined above can be considered as generalizations of the
concept of continuity of real functions with H-continuity being the strongest and
S-continuity the weakest [1]:

H-continuous =⇒ D-continuous =⇒ S-continuous. (3.1)

3.2. CHARACTERIZATIONS

With every interval function ƒ one can associate S-continuous, D-continuous, and
H-continuous functions as stated in the next theorem, which combines results from
[1] and [27].

THEOREM 3.1. Let ƒ ∈ A (Ω). Then

(i) for every dense subset D of Ω the function F(D, Ω, ƒ) is S-continuous;

(ii) the function G(ƒ) = [I(S(I(ƒ))), S(I(S(ƒ)))] is D-continuous;

(iii) both functions F(S(I(ƒ))) and F(I(S(ƒ))) are H-continuous.

This theorem is illustrated by the following example.

EXAMPLE 3.1. Consider the function ƒ ∈ A (R ) given by

ƒ(x) =

⎧
⎪⎨

⎪⎩

[−1, 1], if x ∈ Z ,
0, if x ∈ (−∞, 0) \ Z ,
[0, 1], if x ∈ (0, ∞) \ Z ,
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Figure 1. The function ƒ.

Figure 2. The D-continuous function G(ƒ).

where Z denotes the set of integers, see Figure 1.
We have F(ƒ) = ƒ meaning that ƒ is S-continuous.
The D-continuous function G(ƒ) is given by, see Figure 2:

G(ƒ)(x) =

{
0, if x ∈ (−∞, 0),
[0, 1], if x ∈ [0, ∞).

Finally we have the H-continuous functions, Figure 3:

F
(

S
(
I(ƒ)

))

(x) = 0, x ∈ R ,

F
(

I
(
S(ƒ)

))
(x) =

⎧
⎪⎨

⎪⎩

0, if x ∈ (−∞, 0),
[0, 1], if x = 0,
1, if x ∈ (0, ∞).
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Figure 3. The H-continuous function F(I(S(ƒ))).

The concepts of continuity given in Definitions 3.1, 3.2, and 3.3 are strongly con-
nected to the concepts of semi-continuity of real functions. We have the following
characterization of the fixed points of the lower and upper Baire operators [11]:

I(ƒ) = ƒ ⇐⇒ ƒ is lower semi-continuous on Ω,
S(ƒ) = ƒ ⇐⇒ ƒ is upper semi-continuous on Ω.

(3.2)

Hence for an interval function ƒ = [ƒ, ƒ] ∈ A(Ω)

ƒ is S-continuous ⇐⇒
{

ƒ is upper semi-continuous,
ƒ is lower semi-continuous.

(3.3)

The D-continuous interval functions admit a similar characterization through the
normal upper semi-continuous and normal lower semi-continuous functions, see
[17]. We have

ƒ is D-continuous ⇐⇒
{

ƒ is normal upper semi-continuous,
ƒ is normal lower semi-continuous.

(3.4)

Let us recall that a function ϕ is called normal upper semi-continuous, see [17], if
S(I(ϕ)) = ϕ and it is called normal lower semi-continuous if I(S(ϕ)) = ϕ. In view
of Theorem 3.1 we also have the following characterization:

• If ϕ is upper semi-continuous then

ϕ is normal upper semi-continuous ⇐⇒ F(ϕ) is H-continuous. (3.5)

• If ϕ is lower semi-continuous then

ϕ is normal lower semi-continuous ⇐⇒ F(ϕ) is H-continuous. (3.6)
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The minimality condition used in the definition of Hausdorff continuous functions
can also be formulated in terms of semi-continuous functions, namely, if ƒ = [ƒ, ƒ]
is S-continuous, then ƒ is H-continuous if and only if

{φ ∈ A(Ω) : φ is semi-continuous, ƒ ≤ φ ≤ ƒ} = {ƒ, ƒ}.

3.3. CONTINUITY AND H-CONTINUITY

The H-continuous functions, representing the strongest type of continuity among
the three types considered above, are also similar to the usual continuous real
functions in that they assume point values on a dense subset of the domain Ω. This
is obtained from a Baire category argument. It was shown in [2] that for every
ƒ ∈ H (Ω) the set

Wƒ = {x ∈ Ω : w
(
ƒ(x)

)
> 0} (3.7)

is of first Baire category. Since Ω ⊆ R
n is open this implies that for every ƒ ∈ H (Ω)

the set

Dƒ = {x ∈ Ω : w
(
ƒ(x)

)
= 0} = Ω \ Wƒ (3.8)

is dense in Ω. Since a finite or countable union of sets of first Baire category is
also a set of first Baire category we have that for every finite or countable set F of
Hausdorff continuous functions the set

DF = {x ∈ Ω : w
(
ƒ(x)

)
= 0, ƒ ∈ F} = Ω \

⋃

ƒ ∈F
Wƒ (3.9)

is dense in Ω.
The property that (3.8) is dense in Ω can also be used to characterize H-conti-

nuous functions as follows.

THEOREM 3.2. If the interval function ƒ is D-continuous and assumes point values
on a dense subset D of Ω, that is, w(ƒ(x)) = 0, x ∈ D, then ƒ is H-continuous.

Proof. Let g ∈ A (Ω) satisfy the inclusion g(x) ⊆ ƒ(x), x ∈ Ω. Obviously then
g(x) = ƒ(x), x ∈ D. Using this identity together with the inclusion isotonicity of the
operator F given in (2.1), (2.2), and the Definition 3.2 we have for x ∈ Ω

F(g)(x) ⊆ F(ƒ)(x) = ƒ(x) = F(D, Ω, ƒ)(x) = F(D, Ω, g)(x) ⊆ F(g)(x).

Therefore F(g) = ƒ which implies that ƒ is H-continuous, see Definition 3.3. �

In the sequel we shall use the following notations:

• F (Ω)—the set of all S-continuous functions defined on Ω;

• G (Ω)—the set of all finite D-continuous functions defined on Ω;
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• H (Ω)—the set of all finite H-continuous functions defined on Ω.

The implications (3.1) indicate the inclusions H (Ω) ⊆ G (Ω) ⊆ F (Ω).

3.4. THE SET OF HAUSDORFF CONTINUOUS FUNCTIONS IN REAL ANALYSIS AND
THE ANALYSIS OF DIFFERENTIAL EQUATIONS

Although not well known enough, in many respects the set of Hausdorff continuous
functions H (Ω) is a natural and particularly useful extension of the set of continuous
functions C(Ω). For example, H (Ω) is the Dedekind order completion of C(Ω) with
respect to the point-wise defined partial order, see [2]. This result solves a long
time open problem which asked what is the Dedekind order completion of C(Ω).
The best previous result was obtained by Dilworth back in 1950, [17], and fell far
short of the complete answer. A further topological connection between C(Ω) and
H (Ω) is established in [6]. It is shown that if the vector space C(Ω) is equipped
with the order convergence structure using the usual point-wise defined order, its
completion as a convergence vector space is H (Ω). Even though, the theory of
Hausdorff continuous functions is new and presently still under development, their
applications show that they do play an important role in Real Analysis. In particular
one may note that one of the main motivations behind the development of the various
spaces in Real Analysis as well as in Functional Analysis is the partial differential
equations with the need to assimilate the various types of “weak” solutions. A very
general result concerning the application of Hausdorff continuous functions to the
analysis of PDEs is given in [5]. It is shown that the solutions of large classes of
systems of nonlinear partial differential equations can be assimilated with Hausdorff
continuous functions. This class is of the general form

g
(
x, u(x), …, Dp

x u(x), …
)

= ƒ(x), x ∈ Ω, p ∈ N
n, |p| ≤ m,

where g is only supposed to be jointly continuous in all its arguments and ƒ ∈ H (Ω).
Hence the set H (Ω) might be a viable alternative to some of the presently used
functional spaces (e.g. Lp(Ω), Sobolev spaces) with the advantage of being both
more regular and universal, as well as significantly simpler.

Hausdorff continuous functions are applicable in more particular cases as well.
As an illustration we will consider in detail the viscosity solutions of the Hamilton-
Jacobi equation

Φ
(
x, u(x), ∇u(x)

)
= 0, x ∈ Ω, (3.10)

where u : Ω → R is the unknown function, ∇u is the gradient of u and the given
function Φ : Ω × R × R

n → R is jointly continuous in all its arguments. The theory
of viscosity solutions rests on two fundamental concepts, namely, of subsolution
and of supersolution. Let USC(Ω) denote the set of all real upper semi-continuous
functions on Ω and let LSC(Ω) denote the set of all real lower semi-continuous
functions on Ω.
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DEFINITION 3.4. A function u ∈ USC(Ω) is called a viscosity subsolution of the
equation (3.10) if for any ϕ ∈ C1(Ω) we have Φ(x0, u(x0), ∇ϕ(x0)) ≤ 0 at any local
maximum point x0 of u−ϕ. Similarly, u ∈ LSC(Ω) is called a viscosity supersolution
of the equation (3.10) if for any ϕ ∈ C1(Ω) we have Φ(x0, u(x0), ∇ϕ(x0)) ≥ 0 at any
local minimum point x0 of u − ϕ.

Naturally, a solution should be required somehow to incorporate the properties of
both a subsolution and a supersolution. In the classical viscosity solutions theory,
see [16], a viscosity solution is a function u which is both a subsolution and a
supersolution. Since USC(Ω) ∩ LSC(Ω) = C(Ω), this clearly implies that the
viscosity solutions defined in this way are all continuous functions.

The concept of viscosity solution for functions u which are not necessarily
continuous is introduced by using the lower and upper semi-continuous envelopes
I(u) and S(u), see [20].

DEFINITION 3.5. A function u : Ω → R is called a viscosity solution of (3.10)
if S(u) is a viscosity subsolution of (3.10) and I(u) is a viscosity supersolution of
(3.10).

The first important point to note about the interval approach is as follows. Interval
valued functions appear naturally in the context of noncontinuous viscosity solu-
tions. Namely, they appear as graph completions. Indeed, the above definition places
requirements not on the function u itself but on its lower and upper semi-continuous
envelopes or, in other words, on its graph completion F(u)(x) = [I(u)(x), S(u)(x)],
x ∈ Ω. Clearly, Definition 3.5 treats functions which have the same upper and lower
semi-continuous envelopes, that is, have the same graph completion, as identical
functions. On the other hand, since different functions can have the same graph
completion, a function can not in general be identified from its graph completion,
that is, functions with the same graph completion are indistinguishable. Therefore,
no generality will be lost if only interval valued functions representing graph com-
pletions are considered. We define the concept of viscosity solution for the interval
valued functions in F (Ω).

DEFINITION 3.6. A function u = [u, u] ∈ F (Ω) is called a viscosity solution of
(3.10) if u is a supersolution of (3.10) and u is a subsolution of (3.10).

A second advantage of the interval approach is as follows. A function u ∈ A(Ω)
is a viscosity solution of (3.10) in the sense of Definition 3.5 if and only if the interval
valued function F(u) is a viscosity solution of (3.10) in the sense of Definition 3.6. In
this way the level of the regularity of a solution u is manifested through the width of
the interval valued function F(u). The distance between I(u) and S(u) is an essential
measure of the regularity of any solution u, irrespective of whether it is given as a
point valued function or as an interval valued function. If no restriction is placed on
the distance between I(u) and S(u) we will have some quite meaningless solutions
as shown in [12]. On the other hand, a strong restriction like I(u) = S(u) gives only
solutions which are continuous. This issue was addressed in [4] where the Hausdorff
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continuous viscosity solutions are introduced. If a Hausdorff continuous function
u is a viscosity solution according to Definition 3.6 then, in terms of the Hausdorff
distance (the distance between the closures of the graphs of the functions, [27]), the
functions I(u) and S(u) are as close as they can be, namely, the Hausdorff distance
is zero. Traditionally, discontinuous viscosity solutions are assimilated through the
concept of envelope viscosity solution, see [12]. It is shown in [4] that all envelope
viscosity solutions can be associated with Hausdorff continuous viscosity solutions
through the graph completion operator. Furthermore, it is demonstrated that the
main ideas within the classical theory of continuous viscosity solutions can be
extended to the wider set of Hausdorff continuous functions.

3.5. THE INTERVAL OPERATIONS

We recall the interval-arithmetic operations for addition and multiplication by
scalars. For γ ∈ R , [a, a], [b, b] ∈ IR we have

[a, a] + [b, b] = [a + b, a + b], (3.11)

γ ∗ [a, a] = [min{γ ∗ a, γ ∗ a}, max{γ ∗ a, γ ∗ a}]. (3.12)

One can define corresponding operations for S-continuous functions point-wise
using the interval arithmetic operations (3.11), (3.12).

We use the notation ƒ + g for the point-wise sum of the functions ƒ = [ƒ, ƒ] and
g = [g, g] given by

(ƒ + g)(x) = [ƒ(x) + g(x), ƒ(x) + g(x)], x ∈ Ω. (3.13)

For the scalar multiplication we shall use the interval arithmetic operation (3.12)
point-wise. For every ƒ = [ƒ, ƒ] ∈ F (Ω) and x ∈ Ω we have

(α ∗ ƒ)(x) = α ∗
(
ƒ(x)

)

= [min{α ∗ ƒ(x), α ∗ ƒ(x)}, max{α ∗ ƒ(x), α ∗ ƒ(x)}]. (3.14)

We conclude this section with an example showing that the point-wise definition
of addition for interval functions using the familiar addition of intervals does not
preserve the continuity properties of the summands.

EXAMPLE 3.2. Consider the functions ƒ, g ∈ H (R ) given by

ƒ(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0,
[0, 1], if x = 0,
1, if x > 0;

g(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0,
[−1, 0], if x = 0,
−1, if x > 0.
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Using (3.11) we have

ƒ(x) + g(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0,
[−1, 1], if x = 0,
0, if x > 0.

One should expect that the sum ƒ(x) + g(x) is zero for all x since the two functions
closely resemble continuous functions and from (3.12) we have

g(x) = (−1) ∗ ƒ(x), x ∈ R .

However, we observe that the summands are H-continuous functions while the sum
is not, that is, the set H (Ω) is not closed under the operation addition (3.13) based
on point-wise interval arithmetic.

4. The Set of Hausdorff Continuous Functions as a Linear Space

4.1. LINEAR OPERATIONS: DEFINITION

We shall extend the arithmetic operations of real continuous functions to D-conti-
nuous interval functions in such a way that the subset P of G (Ω) on which the linear
space structure is preserved is as large as possible. For the scalar multiplication
we shall use the point-wise interval arithmetic operation (3.14). (At the end of this
section, see Example 4.2 we shall clarify why we consider D-contionuous functions
and not S-continuous ones.) It should be noted that this operation preserves the
continuity properties (in terms of Definitions 3.1, 3.2, and 3.3) of the interval
functions.

With regard to addition, we define the sum of ƒ, g ∈ G (Ω) in a point-wise way at
all points of the domain Ω at which the value of at least one of the operands is a point
interval. At the remaining points of the domain (where both operands are intervals
with nonzero width) the value of the sum will not be defined in a point-wise way
and remains undetermined for the moment. In order to avoid possible confusion
with the point-wise sum (3.13) we shall denote this new addition in P by “⊕”.
Symbolically, for ƒ = [ƒ, ƒ] ∈ G (Ω) and g = [g, g] ∈ G (Ω) we have

(ƒ ⊕ g)(x) =

{
[ƒ(x) + g(x), ƒ(x) + g(x)], if w

(
ƒ(x)

)
= 0,

[ƒ(x) + g(x), ƒ(x) + g(x)], if w
(
g(x)

)
= 0.

(4.1)

Naturally,

(ƒ ⊕ g)(x) = ƒ(x) + g(x), x ∈ Dƒg, (4.2)

where

Dƒg = {x ∈ Ω : w
(
ƒ(x)

)
= w

(
g(x)

)
= 0}. (4.3)
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Now we shall define the operation addition on H (Ω) in such a way that H (Ω) is
a linear space. Example 3.2 shows that this operation can not be defined point-wise
using interval addition.

Assume first that the operation addition “⊕” can be defined on H (Ω) in such a
way that H (Ω) is a linear space and see what properties should be satisfied. For any
ƒ, g ∈ H (Ω) the set Dƒg defined through (4.3) is dense in Ω, see (3.9). Using (4.2)
we have for x ∈ Ω:

F(Dƒg, Ω, ƒ + g)(x) = F(Dƒg, Ω, ƒ ⊕ g)(x) ⊆ F(ƒ ⊕ g)(x) = (ƒ ⊕ g)(x).

The minimality property of the H-continuous functions, see Definition 3.3, implies
that the only possible way to define the sum of ƒ, g ∈ H (Ω) is given in the following
definition.

DEFINITION 4.1. For every ƒ, g ∈ H (Ω) the interval function

(ƒ ⊕ g)(x) = F(Dƒg, Ω, ƒ + g)(x), x ∈ Ω, (4.4)

is the sum of ƒ and g.

Clearly, the point-wise sum ƒ + g given by (3.13) is S-continuous but not nec-
essarily H-continuous. It is easy to see that for every ƒ, g ∈ H (Ω) we have the
inclusion

(ƒ ⊕ g)(x) ⊆ (ƒ + g)(x), x ∈ Ω. (4.5)

Indeed, since the function ƒ + g is S-continuous and

(ƒ ⊕ g)(x) = ƒ(x) + g(x), x ∈ Dƒg,

then

(ƒ ⊕ g)(x) = F(Dƒg, Ω, ƒ + g)(x) ⊆ F(ƒ + g)(x) = (ƒ + g)(x), x ∈ Ω.

4.2. THE LINEAR OPERATIONS: PROPERTIES

THEOREM 4.1. The set H (Ω) is closed under the operation “⊕”, that is, ƒ ⊕ g ∈
H (Ω) whenever ƒ, g ∈ H (Ω).

Proof. We shall use Definition 3.3 to show that ƒ ⊕ g is H-continuous. The
function ƒ ⊕ g defined in (4.4) is S-continuous, because it is given by a graph
completion operator, see Theorem 3.1(i). Assume that ϕ is an interval function
satisfying the inclusion ϕ(x) ⊆ (ƒ ⊕ g)(x), x ∈ Ω. Then

ϕ(x) ⊆ (ƒ ⊕ g)(x) ⊆ ƒ(x) + g(x), x ∈ Ω,

implies that

ϕ(x) = (ƒ ⊕ g)(x) = ƒ(x) + g(x), x ∈ Dƒg.
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Therefore

(ƒ ⊕ g)(x) = F(Dƒg, Ω, ƒ + g)(x) = F(Dƒg, Ω, ϕ)(x)

⊆ F(ϕ)(x) ⊆ F(ƒ ⊕ g)(x) = (ƒ ⊕ g)(x), x ∈ Ω,

which implies F(ϕ) = ƒ ⊕ g. Hence ƒ ⊕ g ∈ H (Ω). �

It is important to note that the values of the sum ƒ ⊕ g at the points where both
operands assume interval values can not be determined point-wise, i.e., from the
values of ƒ and g at these points. This is illustrated by the following example.

EXAMPLE 4.1. Consider the functions ƒ, g ∈ H (R ) given by

ƒ(x) =

{
sin(1 / x), if x �= 0,
[−1, 1], if x = 0;

g(x) =

{
cos(1 / x), if x �= 0,
[−1, 1], if x = 0.

We have

(ƒ ⊕ g)(x) =

{ √
2 cos(1 / x + π / 4), if x �= 0,

[−√
2,
√

2], if x = 0.

Clearly (ƒ ⊕ g)(0) can not be obtained just from the values ƒ(0) and g(0).

4.3. THE LINEAR SPACE H (Ω)

THEOREM 4.2. The set H (Ω) with the operations addition defined by (4.4) and
multiplication by a real number given in (3.14) is a linear space.

Proof. The proofs of the axioms of a linear space use similar techniques. As an
illustration we show below the second distributive law, namely, that for α, β ∈ R

and ƒ ∈ H (Ω) we have

(α + β) ∗ ƒ = (α ∗ ƒ) ⊕ (β ∗ ƒ).

This law is typically violated in interval spaces [24]. For example, in the space of
real intervals (IR , +, R , ∗), if A ∈ IR is origin symmetric (A = (−1) ∗ A), then we
have for α = 1, β = −1, 0 = 0 ∗ A �= A + (−1) ∗ A = A + A, which is true only for
A = 0. In general only the inclusion

(α + β) ∗ A ⊆ (α ∗ A) + (β ∗ A), α, β ∈ R , A ∈ IR , (4.6)

holds, which is strict whenever αβ < 0 and w(A) > 0. Using inclusion (4.6) and
(3.14) we obtain

(
(α + β) ∗ ƒ

)
(x) = (α + β) ∗ ƒ(x) ⊆ α ∗ ƒ(x) + β ∗ ƒ(x), x ∈ Ω. (4.7)
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We also have, see (4.5),
(
(α ∗ ƒ) ⊕ (β ∗ ƒ)

)
(x) ⊆

(
(α ∗ ƒ) + (β ∗ ƒ)

)
(x)

= α ∗ ƒ(x) + β ∗ ƒ(x), x ∈ Ω. (4.8)

From inclusions (4.7) and (4.8) it follows that

(α + β) ∗ ƒ(x) =
(
(α ∗ ƒ) ⊕ (β ∗ ƒ)

)
(x) = α ∗ ƒ(x) + β ∗ ƒ(x), x ∈ Dƒ,

where Dƒ is the dense subset of Ω on which ƒ assumes point values, see (3.8). The
functions (α + β) ∗ ƒ and (α ∗ ƒ) ⊕ (β ∗ ƒ) are both H-continuous and therefore
D-continuous as well, see (3.1). Then, using Definition 3.2 the above identity
implies (α + β) ∗ ƒ = (α ∗ ƒ) ⊕ (β ∗ ƒ)). �

THEOREM 4.3. Assume that the set P ⊆ G (Ω) is closed under inclusion in the
sense that

ƒ ∈ P , g ∈ G (Ω),
g(x) ⊆ ƒ(x), x ∈ Ω

}

=⇒ g ∈ P . (4.9)

If P ⊆ G (Ω) is a linear space with respect to an operation addition satisfying (4.1)
and the multiplication by scalar (3.14), then P ⊆ H (Ω).

The proof of Theorem 4.3 is rather technical and is given in the Appendix.
Theorem 4.3 indicates that a linear space consisting of D-continuous functions can
not be larger than H (Ω). It was shown already that H (Ω) is a linear space, see
Theorem 4.2. Furthermore, using Definition 3.3 it can be easily seen that H (Ω) has
the property (4.9). Therefore, H (Ω) is the maximal linear space, which satisfies the
assumptions of Theorem 4.3.

It is important to note that the condition P ⊆ G (Ω) is essential for the validity of
Theorem 4.3. It is shown in the example below that one can construct linear spaces
of interval functions which are S-continuous but not D-continuous. However, in our
view, the functions involved in this example show that the inclusion P ⊆ G (Ω) is a
natural condition.

EXAMPLE 4.2. The set
{

ƒ ∈ A (R ) : ∃ϕƒ ∈ C(R ), ∃aƒ ∈ R : ƒ(x) =

{
ϕƒ(x), x �= 0,
ϕƒ(0) + sgn(aƒ)[0, |aƒ|], x = 0

}

with addition

(ƒ�+ g)(x) =

{
ϕƒ(x) + ϕg(x), if x �= 0,
ϕƒ(0) + ϕg(0) + sgn(aƒ + ag)[0, |aƒ + ag|], if x = 0,

and scalar multiplication given in (3.14) is a linear space. One can easily see that
the functions in this space are S-continuous but not D-continuous.
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5. The Set of D-continuous Functions as a Quasi-Linear Space

5.1. EXTENSION OF ADDITION

In this section we show that the operation addition derived in the preceding section
for Hausdorff continuous functions can be extended to D-continuous functions
introducing in G (Ω) the structure of a quasi-linear space. To this end we use an
equivalent formulation of Definition 4.1 using the lower and upper Baire operators
as well as the operator G given in Theorem 3.1(ii).

THEOREM 5.1. For every ƒ, g ∈ H (Ω) we have

ƒ ⊕ g = [I
(
S(ƒ + g)

)
, S
(
I(ƒ + g)

)
] = G(ƒ + g). (5.1)

Proof. Using the monotonicity of the operators I and S, see (2.5), and the fact
the ƒ, g are lower semi-continuous while ƒ, g are upper semi-continuous we have

I
(
S(ƒ + g)

) ≥ I(ƒ + g) = ƒ + g,
S
(
I(ƒ + g)

) ≤ S(ƒ + g) = ƒ + g,

which implies the inclusion

G(ƒ + g)(x) ⊂ (ƒ + g)(x), x ∈ Ω. (5.2)

The above inclusion (5.2) together with inclusion (4.5) imply

(ƒ ⊕ g)(x) = G(ƒ + g)(x) = (ƒ + g)(x), x ∈ Dƒg,

where the set Dƒg is defined through (4.3). The functions G(ƒ + g) and ƒ ⊕ g are
both D-continuous, see Theorem 3.1(ii) and Theorem 4.1. Since Dƒg is dense in Ω,
see (3.9), it follows from Definition 3.2 that these functions are equal on Ω. �

The representation (5.1) of the operation addition “⊕” can be applied to D-conti-
nuous functions as well.

DEFINITION 5.1. For every ƒ, g ∈ G (Ω) the interval function

ƒ ⊕ g = G(ƒ + g)

is the sum of ƒ and g.

Note that due to Theorem 3.1 for every ƒ, g ∈ G (Ω) the function G(ƒ + g) is
D-continuous. Therefore, G (Ω) is closed under the operation addition “⊕” defined
above.

Due to the involvement of the operator G in the definition of addition on G (Ω)
the following lemma will be useful.

LEMMA 5.1. The operator G is inclusion isotone on A (Ω), that is, for every two
functions ƒ, g ∈ A (Ω) we have

ƒ(x) ⊆ g(x), x ∈ Ω =⇒ G(ƒ)(x) ⊆ G(g)(x), x ∈ Ω.
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Proof. Using the monotonicity (2.5) of the operators I and S from the inequali-
ties

ƒ ≥ g, ƒ ≤ g

it follows that

I
(
S(ƒ)

) ≥ I
(
S(g)

)
, S

(
I(ƒ)

) ≤ S
(
I(g)

)
.

The above inequalities imply the required inclusion. �

5.2. RELATION TO INTERVAL HULLS OF CONTINUOUS FUNCTIONS

Definition 5.1 naturally relates to the addition of continuous functions. More pre-
cisely, let F be a bounded set of continuous real functions on Ω and let F̂ be the
set of all continuous interval enclosures of F , that is,

F̂ = {ψ = [ψ, ψ] ∈ A (Ω) : ψ, ψ ∈ C(Ω) : φ(x) ∈ ψ(x), x ∈ Ω, φ ∈ F}. (5.3)

The interval hull of the set F given by

hull(F)(x) =
⋂

ψ ∈F̂
ψ(x), x ∈ Ω, (5.4)

is not always a continuous function. The next theorem shows that the interval hull
is a D-continuous function and characterizes its lower and upper functions.

THEOREM 5.2. Let F be a bounded subset of C(Ω) and let ƒ = [ƒ, ƒ] = hull(F).
Then

a) ƒ is D-continuous;

b) ƒ = I(θ) and ƒ = S(θ) where

θ(x) = inf
φ ∈F

φ(x), θ(x) = sup
φ ∈F

φ(x), x ∈ Ω.

Proof. It follows from (5.4) that

ƒ(x) = inf
ϕ ∈F1

ϕ(x), x ∈ Ω,

where

F1 = {ϕ ∈ C(Ω) : ϕ ≥ φ, φ ∈ F}.

Using that the set F1 is a Dedekind cut in C(Ω) the function ƒ is normal upper
semi-continuous, see [17]. In a similar way the function ƒ is normal lower semi-
continuous. Then the D-continuity of ƒ follows from (3.4). Furthermore, considering
(3.5) and (3.6) the functions F(ƒ) and F(ƒ) are both H-continuous. Using that the
set of Hausdorff continuous functions H (Ω) is the Dedekind order completion of
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C(Ω), see [2], it follows that F(ƒ) is exactly the supremum of F in H (Ω). It was also
shown in [1,the proof of Theorem 5] that this supremum can be represented through
the point-wise supremum θ in the form F(ƒ) = F(S(θ)). Hence ƒ = S(ƒ) = S(θ). The
respective statement for ƒ is proved in a similar way. �

5.3. RELATION TO THE ADDITION OF INTERVAL HULLS

The following theorem shows that the addition of D-continuous functions in Def-
inition 5.1 can be considered as an extension of the usual addition of continuous
real functions to interval hulls of bounded sets of continuous functions.

THEOREM 5.3. Let the D-continuous functions ƒ and g be interval hulls, see (5.4),
of the bounded sets of continuous functions F and G, respectively, that is

ƒ = hull(F), g = hull(G).

Then

ƒ ⊕ g = hull({φ + ϕ : φ ∈ F , ϕ ∈ G}).

Proof. Let

h = hull({φ + ϕ : φ ∈ F , ϕ ∈ G}).

Denote

θ1(x) = sup
φ ∈F

φ(x), x ∈ Ω,

θ2(x) = sup
ϕ ∈G

ϕ(x), x ∈ Ω,

θ3(x) = sup
φ ∈F
ϕ ∈G

(
φ(x) + ϕ(x)

)
, x ∈ Ω.

Since in the definition of θ3(x) the functions φ and ϕ vary independently in the sets
F and G respectively we have

θ3(x) = θ1(x) + θ2(x), x ∈ Ω.

It follows from Theorem 5.2 that

ƒ = S(θ1), g = S(θ2), h = S(θ3).

Furthermore, the functions θ1, θ2, and θ3, being suprema of sets of continuous
functions, are all lower semi-continuous. The functions ƒ, g, and h, being produced
by the operator S, are upper semi-continuous. Therefore, each one of the functions
θ1, θ2, θ3, ƒ, g, and h is discontinuous on a set of first Baire category. Hence the
set W1 on which at least one of the six function is discontinuous is also a set of first
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Baire category. Since the functions θ1, θ2, and θ3 are continuous at every x ∈ Ω\W1

we have

S(θ i)(x) = θ i(x), i = 1, 2, 3, x ∈ Ω \ W1,

which implies

h(x) = θ(x) = θ1(x) + θ2(x) = ƒ(x) + g(x), x ∈ Ω \ W1.

Using that ƒ + g is continuous at every x ∈ Ω \ W1 we further obtain

h(x) = (ƒ + g)(x) = S
(
I(ƒ + g)

)
(x), x ∈ Ω \ W1.

In a similar way we find a set of first Baire category W2 such that

h(x) = I
(
S(ƒ + g)

)
(x), x ∈ Ω \ W2.

Then for x ∈ D = Ω \ (W1 ∩ W2)

h(x) = [I
(
S(ƒ + g)

)
(x), S

(
I(ƒ(x) + g)

)
](x) = G(ƒ + g)(x) = (ƒ ⊕ g)(x).

Using that D is dense in Ω and that the functions h and ƒ ⊕ g are both D-continuous
we obtain

h = F(D, Ω, h) = F(D, Ω, ƒ ⊕ g) = ƒ ⊕ g

which completes the proof. �

The above theorem is illustrated by the following example:

EXAMPLE 5.1. Let us consider the following subsets of C(R )

F = {φλ : λ > 0},

where

φλ (x) =

⎧
⎪⎨

⎪⎩

1 − e−λx

1 + e−λx , if x ≥ 0,

0, if x < 0,

and

G = {ψμ : μ > 0},

where

ψμ(t) =

⎧
⎨

⎩

0, if t > 0,
1 − eμt

1 + eμt , if t ≤ 0.
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Figure 4. The set F and its interval hull ƒ.

Figure 5. The set G and its interval hull g.

The interval hulls of these sets are, see Figures 4 and 5:

ƒ(x) = hull(F)(x) =

{
[0, 1], if x ≥ 0,
0, if x < 0,

g(x) = hull(G)(x) =

{
0, if x > 0,
[0, 1], if x ≤ 0.

Following the usual approach to operations with sets we denote

F + G = {φλ + ψμ : λ , μ > 0}.

We have, see Figure 6:

hull(F + G)(x) = [0, 1] = (ƒ ⊕ g)(x), x ∈ R .
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Figure 6. The set F + G and its interval hull.

Note that the point-wise sum of ƒ and g

(ƒ + g)(x) =

{
[0, 1], if x �= 0,
[0, 2], if x = 0

does not give a sharp bound for the interval hull of the set F + G at x = 0.

5.4. THE QUASI-LINEAR SPACE G (Ω)

THEOREM 5.4. The set G (Ω) with the operation addition given by Definition 5.1
and multiplication by a real number defined through (3.14) is a quasi-linear space.

Proof. The axioms of quasi-linear space [24] are verified similarly to the way
the axioms for linear space are verified for H-continuous functions. The difference
is in the second distributive law involving addition of scalars, that is,

(α + β) ∗ ƒ = (α ∗ ƒ) ⊕ (β ∗ ƒ),

which holds for αβ ≥ 0. For α, β satisfying αβ ≥ 0 we have
(
(α + β) ∗ ƒ

)
(x) = α ∗ ƒ(x) + β ∗ ƒ(x) = (α ∗ ƒ + β ∗ ƒ)(x), x ∈ Ω.

The function α ∗ ƒ + β ∗ ƒ is D-continuous. Therefore

(α ∗ ƒ) ⊕ (β ∗ ƒ) = G(α ∗ ƒ + β ∗ ƒ) = α ∗ ƒ + β ∗ ƒ = (α + β) ∗ ƒ. �

5.5. INCLUSION ISOTONE PROPERTIES

A natural connection between the D-continuous interval functions and the interval
hulls of bounded sets of continuous functions functions was established in Sec-
tions 5.2 and 5.3. The applicability of the D-continuous functions to constructing
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interval enclosures is further demonstrated in the next theorem, which establishes
the inclusion isotonicity of the operation addition ⊕ defined in Section 5.1.

THEOREM 5.5. For every ƒ, g, u, v ∈ G (Ω) we have

ƒ(x) ⊆ u(x), g(x) ⊆ v(x), x ∈ Ω =⇒ (ƒ ⊕ g)(x) ⊆ (u ⊕ v)(x), x ∈ Ω. (5.5)

Proof. It is well known that the addition of intervals is inclusion isotone.
Hence

(ƒ + g)(x) ⊆ (u + v)(x), x ∈ Ω.

Then, using the inclusion isotonicity of the operator G, see Lemma 5.1, we have

(ƒ ⊕ g)(x) = G(ƒ + g)(x) ⊆ G(u + v)(x) = (u ⊕ v)(x), x ∈ Ω. �

6. Conclusion

The operations addition and scalar multiplication of point-valued functions are
extended on the set of Hausdorff continuous interval functions in such a way
that the latter becomes a linear space. Furthermore, we prove that this space is the
largest linear space within the set of D-continuous interval functions with operations
addition and multiplication by scalars extending the respective operations of point-
valued functions. The operations are further extended to the set of D-continuous
interval functions introducing in it the structure of a quasi-linear space. Both H- and
D-continuous functions are inclusion isotone.

Topics for future work. The algebraic properties of the set of D-continuous func-
tions are to be investigated. It is hoped that the study of these practically important
objects will contribute for the development of the general abstract theory of partial-
ly ordered quasivector spaces (quasivector lattices). Applications of the algebraic
properties of D-continuous functions to the formulation of new dynamic problems
and their solutions will be studied. Construction of the space of D-continuous
functions as interval space over the vector lattice of H-continuous functions is
intended.
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Appendix

Proof of Theorem 4.3. Let ƒ = [ƒ, ƒ] ∈ P. We shall show that ƒ is H-continuous
by proving that it assumes point values on a dense subset of the domain, see
Theorem 3.2. This will be established by showing that for every ε > 0 the set

Wƒ, ε = {x ∈ Ω : w
(
ƒ(x)

) ≥ ε}
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is closed and nowhere dense. Since ƒ is S-continuous, the functions ƒ and ƒ are
lower and upper semi-continuous functions, respectively, see (3.3). Therefore, the
width function w(ƒ(x)) = ƒ(x) − ƒ(x) is an upper semi-continuous function which
implies that Wƒ, ε is closed.

We shall show that Wƒ, ε is nowhere dense by assuming the opposite, that is,
there exists ε > 0 such that Wƒ, ε is not nowhere dense in Ω. This means that there
exists an open set V ⊆ Ω such that Wƒ, ε ∩ V is dense in V . Since the function
w(ƒ) is upper semi-continuous it is a fixed point of the upper Baire operator, that
is, S(w(ƒ)) = w(ƒ), see (3.2). Let x ∈ V . Using that Wƒ, ε ∩ V is dense in V , for any
δ > 0 the set Bδ (x) ∩ Wƒ, ε is not empty. Then, we have

w
(
ƒ(x)

)
= S

(
w(ƒ)

)
(x) = inf

δ > 0
sup{w

(
ƒ(y)

)
: y ∈ Bδ (x)}

≥ inf
δ > 0

sup{w
(
ƒ(y)

)
: y ∈ Bδ (x) ∩ Wƒ, ε} ≥ ε.

Therefore,

w
(
ƒ(x)

) ≥ ε, x ∈ V . (A.1)

Let us consider the functions

ϕ(x) =
ƒ(x) + ƒ(x)

2
, x ∈ Ω,

g = F
(

S
(
I(ϕ)

))

.

We have ϕ(x) ∈ ƒ(x), x ∈ Ω. From the S-continuity of ƒ it follows immediately
that g(x) ⊆ ƒ(x), x ∈ Ω. Since g is H-continuous, see Theorem 3.1, and therefore
D-continuous as well, see (3.1), it follows from the assumption (4.9) that g ∈ P.

Using that the set V is open there exists a ∈ V and δ > 0 such that

Bδ (a) ⊂ V , (A.2)

where Bδ (a) denotes the closure of Bδ (a). Now consider the function

h(x) =

⎧
⎪⎨

⎪⎩

g(x), if x ∈ Ω \ Bδ (a),
[

g(x) − ε
2

, g(x) +
ε
2

]

, if x ∈ Bδ (a).

It is easy to see that h is D-continuous. We shall show that

h(x) ⊆ ƒ(x), x ∈ Ω. (A.3)

Using inequality (A.1) we obtain

ƒ(x) ≥ ƒ(x) + εμ(x), x ∈ Ω, (A.4)

where

μ(x) =

{
1, if x ∈ V ,
0, if x ∈ Ω \ V .
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Therefore for every x ∈ Ω we have

ϕ(x) =
ƒ(x) + ƒ(x)

2
≥ ƒ(x) + ƒ(x) + εμ(x)

2
≥ ƒ(x) +

ε
2

μ(x), (A.5)

ϕ(x) =
ƒ(x) + ƒ(x)

2
≤ ƒ(x) − εμ(x) + ƒ(x)

2
≤ ƒ(x) − ε

2
μ(x). (A.6)

Inclusion (A.2) and inequalities (A.5) and (A.6) imply

h ≥ g − ε
2

μ = I
(

S
(
I(ϕ)

))− ε
2

μ ≥ I(ϕ) − ε
2

μ

≥ I
(

ƒ +
ε
2

μ
)

− ε
2

μ ≥ I(ƒ) +
ε
2

I(μ) − ε
2

μ = ƒ,

h = g +
ε
2

μ = S
(
I(ϕ)

)
+

ε
2

μ ≤ S(ϕ) +
ε
2

μ

≤ S
(

ƒ − ε
2

μ
)

+
ε
2

μ ≤ S(ƒ) − ε
2

I(μ) +
ε
2

μ = ƒ,

which completes the proof of the inclusion (A.3). Due to assumption (4.9) we have
h ∈ P.

Since P is a linear space the function

ψ = h + (−1) ∗ g

is also in P. Using (3.14) and (4.1) for x ∈ Dg = {x ∈ Ω : w(g(x)) = 0} we have

ψ(x) = [h(x) + (−1) ∗ g(x), h(x) + (−1) ∗ g(x)]

=

{
0, if x ∈ Dg \ Bδ (a),
[−ε, ε], if x ∈ Dg ∩ Bδ (a).

Since g is H-continuous it follows from (3.8) that the set Dg is dense in Ω. Therefore
the function

θ = F(D, Ω, ψ) ∈ A (Ω)

is well defined. It is easy to see that

θ(x) =

{
0, if x ∈ Ω \ Bδ (a),
[−ε, ε], if x ∈ Bδ (a).

Clearly θ is D-continuous. Using also (2.2) we have

θ = F(D, Ω, ψ) ⊆ F(ψ) = ψ,

which implies that θ ∈ P, see (4.9). For the function θ, according to (3.14) we
have

(
(−1) ∗ θ

)
(x) =

{
0, if x ∈ D \ Bδ (a),
[−ε, ε], if x ∈ D ∩ Bδ (a).
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Hence

(−1) ∗ θ = θ. (A.7)

Using that P is a linear space, (A.7) implies θ = 0, which is false. The obtained
contradiction shows that for every ε > 0 the set Wƒ, ε is closed and nowhere dense.
The set Wƒ defined in (3.7) can be represented in the form

Wƒ =
∞⋃

n= 1

Wƒ, 1
n
,

which implies that it is a set of first Baire category. Hence ƒ assumes point values
on a dense subset Dƒ = Ω\Wƒ of the domain Ω. Thus the H-continuity of ƒ follows
from Theorem 3.2. �
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