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Abstract. This paper brings together three concepts which have not been related so
far, namely, the concept of order convergence, the concept of convergence space and
the concept of Hausdorff continuous functions. The order convergence on a poset
P , which is generally not a topological convergence, can be studied through the
concept of convergence space. Indeed, under certain mild assumptions there exists
a convergence structure on P which induces the order convergence. In particular,
the result is true for any vector lattice. The primary focus is on the set C(X) of all
continuous real functions on a topological space X. The vector lattice C(X) gives
a typical example when the order convergence cannot be induced by a topology,
thus justifying our interest in the convergence vector structure inducing the order
convergence. The completion of the respective convergence vector space is obtained
through Hausdorff continuous functions.
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1. Introduction. The convergence of sequences of functions is one of the funda-
mental topics associated with functional spaces. Most commonly such convergence
is studied within the framework of topology. However, topology does not always
give an adequate representation of convergence and there are well known cases
where the convergence is not topological, see [5], [8]. The case of order convergence
discussed in this paper falls in this category. Hence the more general concepts of
convergence structures and convergence spaces are applied.

The recent book [5], which also gives an up to date account on convergence
structures, motivates their application through the so called continuous convergence
structure on the set C(X,Y ) of all continuous functions from the convergence
space X to the convergence space Y . Furthermore, it shows convincingly that
convergence spaces provide an excellent setting for functional analysis, including
the study of duality in vector spaces.

In the present paper we consider convergence spaces with convergence struc-
tures defined through partial order, or more precisely, through the so called order
convergence. The primary focus is on the set C(X) of all continuous real valued
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functions defined on a topological space X, where the order convergence is given
through the natural partial order which is induced in a point-wise way by the total
order on R. The fact that, in general, the order convergence on a poset is not
topological is well known, [12], [13]. We will show through examples that this is
indeed the case with the order convergence on C(X), see Section 4. We will also
show that there exists a convergence structure in the sense of [5] on C(X) which
induces sequential convergence identical with the order convergence.

There is a number of natural topologies associated with the set C(X). These
include the topology of point-wise convergence (point-open topology), the compact-
open topology, the topology of uniform convergence, to mention a few, [11]. For
understanding of the place of the order convergence structure introduced in this
paper with regard to these well known topologies we should note that the con-
vergence in each one of these topologies is at least as strong as the point-wise
convergence. Furthermore, the convergence in the continuous convergence struc-
ture discussed in [5] is also stronger than the point-wise convergence. In fact, when
X is locally compact the continuous convergence structure on C(X) coincides with
the compact-open topology, see [5] [Corollary 1.5.17]. On the other hand we shall
see in the sequel that although the order convergence retains some essential fea-
tures of the uniform convergence, it is nevertheless not point-wise. In this respect,
it is appropriate to mention here that in functional analysis we often encounter
sequences where the convergence is not point-wise.

The order convergence on a poset is also studied through the concept of the so
called order topology which is the finest topology preserving the order convergence,
see [6], [12]. In this regard we should mention here the fundamental difference
between the order topology and the convergence structure constructed in this paper.
Namely, the set of convergent sequences in the order topology is generally larger
than the set of order convergent sequences while we, on the other hand, define
a convergence structure (a pseudo topology) which gives exactly the same set of
convergent sequences as the order convergence.

The paper is organized as follows. Section 2 gives a necessary background on
the theory of convergence space. Section 3 deals with the sequential convergence
structure induced by the order convergence on a poset, a lattice and a vector lattice.
It is shown that, under certain conditions, the order convergence on a lattice P can
be induced by a convergence structure on P . This result is interesting particularly
in view of the fact that, in general, the sequential order convergence structure on
a poset P cannot be induced by a topology. The order convergence on the vector
lattice C(X) is discussed in Section 4 where C(X) is proved to be a convergence
vector space with convergent sequences exactly as given by the order convergence.
However, this convergence vector space is not complete. The completion is obtained
through the Hausdorff continuous functions on X. Section 5 is an introduction to
the set of Hausdorff continuous functions while the main result concerning the
completion of C(X) is discussed in Section 6. Some final remarks are given in the
Conclusion. In order to avoid frequent interruptions of the exposition by technical
results and lengthy proofs, some technical lemmas with respective proofs as well
as the proof of Theorem 26 are given in the Appendix.
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2. Convergence structure and convergence space. Since the concepts of
convergence structure and convergence space are fundamental for the exposition
we will give in this section the basic definitions and some related theorems. For
further details as well as the proofs of all statements in this section the reader is
referred to [5].

Let K be a given set on which we shall define a convergence structure. For
convenience we recall a few basic concepts related to filters. A filter A on the set
K is a nonempty collection of subsets of K which does not contain the empty set
and is closed under finite intersections and supersets. A subset D of a filter A is
called a (filter) basis of A and A the filter generated by D if each set in A contains
a set in D. If A and B are filters on K then A is called finer than B and B coarser
than A if B ⊆ A holds.

Definition 1. A mapping λ from the set K into the power set of the set of filters
on K is called a convergence structure on K and (K, λ) a convergence space if the
following hold for all f ∈ K:

(i) The filter generated by {{f}} belongs to λ(f).

(ii) For all filters A,B ∈ λ(f) the intersection A⋂B belongs to λ(f).

(iii) If A ∈ λ(f), then B ∈ λ(f) for all filters B which are finer than A.

If A ∈ λ(f) we also say that the filter A converges to f and write A → f .
Every topological space generates naturally a convergence space where a filter

converges to f whenever it is finer than the neighborhood filter of f . A convergence
space is typically not a topological space but a more general structure. This usually
happens because given a convergence space the set of filters convergent in it need
not coincide with the set of filters convergent in any topology. However, most of
the basic topological concepts can be extended to convergence spaces. Below we
define continuity and some related concepts.

Definition 2. Let K and L be convergence spaces and let ϕ : K → L be a given
mapping. For any filter A on K the filter generated by the basis {ϕ(A) : A ∈ A}
is called the image filter of A under ϕ and is denoted by ϕ(A).

Definition 3. Let K and L be convergence spaces. A mapping ϕ : K → L is
called continuous at f ∈ K if for every filter A on K we have ϕ(A) → ϕ(f) in L
whenever A → f in K. The mapping ϕ is called continuous if it is continuous at
every f ∈ K, a homeomorphism if it is bijective and both ϕ and ϕ−1 are continuous
and, respectively, an embedding if ϕ is a homeomorphism onto its codomain.

A convergence structure λ on K induces in a natural way a sequential conver-
gence on K as follows. Let ξ = (ξi)i∈N be a sequence on K. The filter generated
by the collection of sets {{ξi : i ≥ n} : n ∈ N} is called the Frechet filter of ξ and
is denoted by 〈ξ〉.
Definition 4. A sequence ξ on a convergence space (K, λ) is said to converge to
f ∈ K if 〈ξ〉 ∈ λ(f).
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The sequential convergence defined in this way introduces on K a sequential
convergence structure in terms of the following definition.

Definition 5. A mapping σ from the set K into the power set of the set of all
sequences on K is called a sequential convergence structure and, correspondingly,
(K, σ) a sequential convergence space if the following hold for any f ∈ K:

(i) The constant sequence with the value f belongs to σ(f).

(ii) If a sequence belongs to σ(f), so does any subsequence of it.

Following the commonly used terminology we will say that the sequence ξ con-
verges to f and also write ξ → f whenever ξ ∈ σ(f).

The sequential convergence structure σ defined on K through Definition 4 is
called the induced sequential convergence structure.

Definition 6. Let K and L be sequential convergence spaces. A mapping ϕ :
K → L is called sequentially continuous at f ∈ K if for every sequence 〈ξ〉 on K we
have ϕ(ξ) → ϕ(f) in L whenever ξ → f in K. The mapping ϕ is called sequentially
continuous if it is sequentially continuous at every f ∈ K.

While every convergence structure on K induces a sequential convergence struc-
ture on K, the converse is not always true, that is, if (K, σ) is a sequential con-
vergence space, then the existence of convergence structure on K which induces σ
cannot be guaranteed. A necessary and sufficient condition is stated in the following
theorem.

Theorem 7. Let (K, σ) be a sequential convergence space. Then there exists a
convergence structure λ on K inducing σ if and only if for any two sequences ξ and
η on K and f ∈ K the following hold:

(i) If ξ → f and 〈η〉 = 〈ξ〉 then η → f. (1)

(ii) If ξ → f and η → f then ξ � η → f, where ξ � η denotes the (2)
trivial mixture of ξ and η, that is, (ξ � η)2n−1 = ξn and

(ξ � η)2n = ηn for all n ∈ N.

Following the terminology adopted in [5] a sequential convergence space satis-
fying the conditions (1) and (2) is called an FS-space. The following concepts will
also be used in the sequel.

Definition 8. A convergence space (K, λ) is called first countable if, for each filter
converging to an element f , there exists a coarser filter with a countable basis which
still converges to f .

Definition 9. A convergence space (K, λ) is called sequentially determined if the
following hold:

(i) (K, λ) is first countable.
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(ii Given f ∈ K a filter A on K with a countable basis converges to f whenever
each sequence ξ which is finer than A, that is, A ⊆ 〈ξ〉, converges to f .

The convergence structure inducing the sequential convergence structure σ in
an FS-space (K, σ) is generally not unique. However, there is a unique sequentially
determined convergence structure inducing σ and the following theorem gives a
general way of constructing it.

Theorem 10. Given an FS-space (K, σ) a convergence structure γ(σ) which in-
duces σ can be defined on K as follows:

A filter A converges to f or A ∈ γ(σ)(f) if and only if there is a
coarser filter B with a countable basis with the property that ξ → f
for all sequences ξ which are finer than B.

Furthermore, γ(σ) is the unique sequentially determined convergence structure on
K which induces the sequential convergence structure σ.

The concept of convergence vector space given below combines the concepts of
convergence space and vector space in a similar way as the concept of topological
vector space brings together the concepts of topological space and vector space.

Definition 11. A convergence structure λ on a real vector space K is called a
vector space convergence structure and (K, λ) convergence vector space if addition
and scalar multiplication are continuous.

In the above definition the addition is a mapping defined on the Tychonoff
product space K × K and the scalar multiplication is a mapping defined on the
Tychonoff product space R×K. Let us recall the definition of the Tychonoff product
of convergence spaces. Given a family of convergence spaces (Xi)i∈I the Tychonoff
product convergence structure on

∏
i∈I

Xi is defined through the projection mappings

pi :
∏
j∈I

Xj → Xi, i ∈ I, as follows:

A → f in
∏
i∈I

Xi ⇐⇒ pi(A) → pi(f) in Xi, i ∈ I. (3)

The vector space convergence structure on K introduces in a natural way a
uniform convergence structure - a generalization of the concept of uniformity as-
sociated with the uniform spaces. Cauchy filter and Cauchy sequence as well as
the related concept of completeness are defined on a convergence vector space as
follows.

Definition 12. A filter A on a convergence vector space K is called a Cauchy filter
if the filter A−A converges to zero (the additive neutral element). A sequence ξ on
K is called a Cauchy sequence if 〈ξ〉 is a Cauchy filter, that is, 〈ξ〉 − 〈ξ〉 converges
to zero (the additive neutral element).
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Definition 13. A convergence vector space K is called complete if every Cauchy
filter converges and it is called sequentially complete if every Cauchy sequence
converges.

The completion of a convergence vector space is in general a complicated issue.
Part of the problem is in the following. For a convergence vector space K one can
construct a completion K̃ of the uniform convergence structure very much in the
same way as in the case of uniform topological space and this completion is unique.
The algebraic operations are extended on K̃ in a natural way so that K̃ becomes
a convergence vector space. However, the subspace convergence structure induced
from K̃ to K may differ from the original convergence structure on K. It was pointed
out in [5] [Chapter 2.3] that in general there are three different completion theories,
namely, for uniform convergence spaces, for convergence groups and for convergence
vector spaces. The completion of convergence vector space is particularly discussed
in [7].

3. Order convergence and the corresponding convergence structure on
a poset and a vector lattice. Let P be a poset with a partial order ≤.

Definition 14. A sequence ξ = (ξn)n∈N on P is said to order converge to f ∈ P
if there exist on P an increasing sequence α = (αn)n∈N and a decreasing sequence
β = (βn)n∈N such that

αn ≤ ξn ≤ βn, n ∈ N,

and
f = sup

n∈N

αn = inf
n∈N

βn.

It is easy to see that the order convergence on a poset P satisfies the conditions
stated in Definition 5. Hence it introduces on the poset a sequential convergence
structure which we denote by σo, that is, for any sequence ξ on P and f ∈ P

ξ ∈ σo(f) ⇐⇒ ξ order converges to f . (4)

It is well known that, in general, the order convergence cannot be derived from
a topology. More precisely, if P is a topological space the class of convergent
sequences with respect to the topology defines a sequential convergence structure,
see Definition 5, which satisfies two additional properties, namely,

Urysohn property: A sequence converges to f whenever every subsequence has
a subsequence which converges to f . (5)

Diagonal property: Let for every n ∈ N the sequence (pnm)m∈N converge to ξn. If
the sequence (ξn)n∈N converges to f then there exists a mapping k : N → N such
that the sequence (pn k(n))n∈N converges to f . (6)

In general, the sequential order convergence structure σo does not have these
two properties. In the next section we will give an example showing that the
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sequential order convergence structure σo on C(X) does not satisfy the Urysohn
property. An example that σo also violates the diagonal property on C(X) is given
in [15]. Hence the sequential convergence structure σo on P cannot, in general, be
induced by a topology. Then it is an interesting question if σo can be induced by a
convergence structure on P . The following theorem shows that at least one of the
conditions in Theorem 7 is satisfied under very general assumptions for P .

Theorem 15. Let the poset P be a lattice. The sequential convergence space
(P, σo) satisfies property (1), that is, for any two sequences ξ and η on P , if ξ → f
and 〈η〉 = 〈ξ〉 then η → f .

Proof. Let ξ and η be sequences on P where ξ → f and 〈ξ〉 = 〈η〉. Since the
sequence ξ order converges to f there exist sequences α = (αn)n∈N and β = (βn)n∈N

with the properties specified in Definition 14. First let us note that for every
n ∈ N the elements αn and βn are respectively lower and upper bounds of the set
{ξi : i ≥ n}. Indeed, we have

αn ≤ αi ≤ ξi ≤ βi ≤ βn, i ≥ n.

Furthermore, since {ξi : i ≥ n} ∈ 〈ξ〉 = 〈η〉 there exists kn ∈ N such that

{ηj : j ≥ kn} ⊆ {ξi : i ≥ n}
Then αn and βn are respectively lower and upper bounds of the set {ηj : j ≥ kn}.
Hence we can construct inductively an increasing sequence of naturals k1, k2, k3, ...
such that

αn ≤ ηj ≤ βn, j ≥ kn, n ∈ N. (7)

Now we can define two new sequences (aj)j∈N and (bj)j∈N as follows:

aj = inf{η1, ..., ηk1−1, α1}, j = 1, 2, ..., k1−1
aj = αn, j = kn, kn+1, ..., kn+1−1, n = 1, 2, ...

bj = sup{η1, ..., ηk1−1, β1}, j = 1, 2, ..., k1−1
bj = βn, j = kn, kn+1..., kn+1−1, n = 1, 2, ...

Clearly, (aj)j∈N is an increasing sequence while (bj)j∈N is a decreasing sequence.
From the inequality (7) it follows that

aj ≤ ηj ≤ bj , j ∈ N.

We also have

sup
j∈N

aj = sup
n∈N

αn = f

inf
j∈N

bj = inf
n∈N

βn = f.

Hence it follows from Definition 14 that the sequence η order converges to f . �
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The sequential convergence space (P, σo) is an FS-space only if condition (2) is
also satisfied. The characterization of the posets on which the order convergence
structure σo satisfies condition (2) is an open problem. If this condition is satisfied
then according to Theorem 7 there exists on P a convergence structure inducing
σo. In such a case we will define explicitly a first countable convergence structure
on P which induces σo. As usual for arbitrary f, g ∈ P , f ≤ g, by [f, g] we denote
the interval with end points f and g, that is,

[f, g] = {φ ∈ P : f ≤ φ ≤ g}.

Let λo be a mapping from P into the power set of the filters on P defined through

A ∈ λo(f) ⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

there exists a coarser filter B generated by a
basis of the form {[αn, βn] : n ∈ N} where
• (αn)n∈N is an increasing sequence on P
• (βn)n∈N is a decreasing sequence on P
• f = sup

n∈N

αn = inf
n∈N

βn

(8)

Theorem 16. Let the poset P be a lattice and let (P, σo) be an FS-space. Consider
on P the mapping λo given in (8). Then

(i) λo is a convergence structure;

(ii) if a filter A ∈ λo(f) has a countable basis {A1, A2, ... } where A1 is (order)
bounded and A1 ⊇ A2 ⊇ ... , then there exist an increasing sequence α =
(αn)n∈N and a decreasing sequence β = (βn)n∈N such that

αn ≤ φ ≤ βn, φ ∈ An, n ∈ N

f = sup
n∈N

αn = inf
n∈N

βn;

(iii) λo induces on P the sequential convergence structure σo.

Proof. (i) Conditions (i) and (iii) of Definition 1 are obvious. We will
prove (ii). Let A(1),A(2) ∈ λo(f). Then there exist sequences α(1) = (α(1)

n )n∈N,
β(1) = (β(1)

n )n∈N and α(2) = (α(2)
n )n∈N, β(2) = (β(2)

n )n∈N which can be associated
respectively with the filters A(1) and A(2) in terms of the definition of λo, see (8).
Denote αn = inf{α(1)

n , α
(2)
n }, βn = sup{β(1)

n , β
(2)
n }, n ∈ N. It is easy to see that

the filter B generated by the base {[αn, βn] : n ∈ N} is coarser than the filter
A = A(1) ∩ A(2). Furthermore, since both (α(1))n∈N and (α(2))n∈N are increasing
the sequence (αn)n∈N is also increasing. Similarly, the sequence (βn)n∈N is de-
creasing. Hence it remains to show that f = sup

n∈N

αn = inf
n∈N

βn. We will prove the

first equality since the second one is proved in a similar way. It follows directly
from Definition 14 that the sequences α(1) and α(2) order converge to f . Due to
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the assumption that (P, σo) is an FS-space the trivial mixture α(1) � α(2) also or-
der converges to f . Then there exist an increasing sequence α̃ = (α̃n)n∈N and a
decreasing sequence β̃ = (β̃n)n∈N such that

α̃2n−1 ≤ α(1)
n ≤ β̃2n−1 , α̃2n ≤ α(2)

n ≤ β̃2n , n ∈ N, (9)
f = sup

n∈N

α̃n = inf
n∈N

β̃n. (10)

Then we have

αn = inf{α(1)
n , α(2)

n } ≥ α̃2n−1

αn = inf{α(1)
n , α(2)

n } ≤ β̃2n.

Using (10) and the monotonicity of the involved sequences the above inequalities
imply f = supn∈N αn, which completes the proof of part (i) of the theorem.

(ii) Let A be a filter as specified in the theorem. Then there exists a coarser
filter B generated by a basis of the form {[α̃n, β̃n] : n ∈ N}, where the sequences
α̃ = (α̃n)n∈N, β̃ = (β̃n)n∈N satisfy the conditions given in the definition of λo,
see (8). Since B is coarser than A, for every n ∈ N there exists kn such that
Akn

⊆ [α̃n, β̃n]. Let a and b be respectively lower and upper bounds of the set A1.
Then the required sequences α and β can be constructed as stated below

αj = inf{a, α̃1}, j = 1, ..., k1 − 1,
αj = α̃n, j = kn, kn + 1, ..., kn+1 − 1, n = 1, 2, ...

βj = sup{b, β̃1}, j = 1, ..., k1 − 1,

βj = β̃n, j = kn, kn + 1, ..., kn+1 − 1, n = 1, 2, ...

(iii) We need to proof that a sequence ξ on P order converges to f ∈ P if
and only if its Frechet filter 〈ξ〉 converges to f in the convergence structure λo.
The implication in one direction, namely that the order convergence of a sequence
implies that its Frechet filter converges in λo follows directly from the way λo is
defined, see (8). We will prove the converse implication. Assume that for a given
sequence ξ its Frechet filter 〈ξ〉 converges to f in λo. Then we can associated
with 〈ξ〉 a coarser filter B and respective sequences α̃ = (α̃n)n∈N, β̃ = (β̃n)n∈N

satisfying the conditions given in (8). The Frechet filter 〈ξ〉 is generated by the
basis {{ξm : m ≥ n} : n ∈ N}. Using that B is coarser than 〈ξ〉 there exists
k ∈ N such that {ξm : m ≥ k} ⊆ [α̃1, β̃1]. Since the sequence ξ has only finite
number of elements outside the interval [α̃1, β̃1] it is bounded. Now we can apply
the statement proved in (ii) to the filter 〈ξ〉. There exist an increasing sequence
α = (αn)n∈N and a decreasing sequence β = (βn)n∈N such that

αn ≤ ξm ≤ βn, m ≥ n, n ∈ N

f = sup
n∈N

αn = inf
n∈N

βn.

This implies that ξ order converges to f . �
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In the sequel we will refer to λo as the order convergence structure on the poset
P and to the space (P, λo) as order convergence space. From the definition of λo it
follows immediately that it is first countable. However the characterization of the
posets for which it is also sequentially determined is an open problem. We should
note that the sequentially determined convergence structure γ(σo) given through
Theorem 10 is the coarsest (maximal) convergence structure on P inducing σo and
we have

λo(f) ⊆ γ(σo)(f), f ∈ P.

It can be shown that λo is the finest (minimal) convergence structure which induces
σo and satisfies the “squeeze” property, namely, if the sequences ξ and η with ξ ≤ η
both converge to f then so does the filter generated by the basis {{p ∈ P : ξn ≤
p ≤ ηn} : n ∈ N}.

As mentioned already the sequential convergence structure σo does not satisfy
the diagonal property, see (3). Lemma 36 which is given in the Appendix states a
result for monotone sequences which is similar to the diagonal property. This result
is useful in situations requiring the diagonal property and will indeed be applied
in the sequel, namely in Theorem 27.

The next theorem deals with the special case when the poset P is a vector
lattice or Riesz space.

Theorem 17. Let P be a vector lattice. Then (P, σo) is an FS-space. Further-
more, if P is an Archimedean vector lattice then the convergence structure λo given
in (8) is a vector space convergence structure and (P, λo) is a convergence vector
space.

Proof. We need to show that σo satisfies conditions (1) and (2). Condition (1)
follows from Theorem 15 since P is a lattice. We will prove condition (2). Let
the sequences ξ and η both order converge to f and let the sequences (α(1)

n )n∈N,
(β(1)

n )n∈N and (α(2)
n )n∈N, (β(2)

n )n∈N be the sequences associated respectively with ξ
and η in terms of Definition 14. Consider the sequences (αn)n∈N, (βn)n∈N defined
by

α2k−1 = α2k = inf{α(1)
k , α

(2)
k }, k ∈ N,

β2k−1 = β2k = sup{β(1)
k , β

(2)
k }, k ∈ N.

Then the trivial mixture ξ � η consisting of alternating elements of ξ and η satisfies

αn ≤ (ξ � η)n ≤ βn, n ∈ N.

It was shown in [9] [Theorem 15.3] that if P is a vector lattice then for sequences
(α(1)

n )n∈N, (α(2)
n )n∈N as given here we have that (inf{α(1)

k , α
(2)
k })k∈N is an increasing

sequence and

sup
k∈N

(inf{α(1)
k , α

(2)
k }) = inf{sup

k∈N

α
(1)
k , sup

k∈N

α
(2)
k } = f.
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Hence the sequence (αn)n∈N is increasing and f = sup
n∈N

αn. In a similar way, the

sequence (βn)n∈N is decreasing and f = inf
n∈N

βn. Then it follows from Definition 14

that the trivial mixture of the sequences ξ and η converges to f . Hence condition
(2) is satisfied and (P, σo) is an FS-space.

Let now P be an Archimedean vector lattice. It is well know that in this
case the vector space operations are sequentially continuous with respect to the
order convergence, see [16] [Theorem 10.2(iii)] and [9] [Chapter 2.16]. Sequential
continuity, in general, does not imply continuity. Moreover, the convergence space
(P, λo) is first countable but whether or not it is sequentially determined is an open
problem. Hence theorems like [5] [Theorem 1.6.14] are not applicable. That is why
here we will give a direct proof of the continuity of the vector space operations on
P .

For convenience denote by d : P × P → P the addition mapping, that is,
d(a1, a2) = a1 +a2, a1, a2 ∈ P . Let p1, p2 : P ×P → P be the projection mappings
on P ×P about the first coordinate and about the second coordinate, respectively.
Assume that A is a filter on P × P which converges to (a1, a2) ∈ P × P in the
product convergence structure on P ×P , see (3). This means that pi(A) ∈ λo(ai),
i = 1, 2. From the definition of λo, see (8), it follows that there exists filters B1

and B2 with Bi ⊆ pi(A), i = 1, 2, which are respectively generated by bases of the
form

{[α(i)
n , β(i)

n ] : n ∈ N}, i = 1, 2,

where the sequences (α(i)
n )n∈N, i = 1, 2, are increasing, the sequences (β(i)

n )n∈N,
i = 1, 2, are decreasing and

ai = sup
n∈N

α(i)
n = inf

n∈N

β(i)
n , i = 1, 2.

It is easy to see that the filter D on P × P generated by a basis of the form

{[α(1)
n , β(1)

n ] × [α(2)
n , β(2)

n ] : n ∈ N},
is coarser than A. Furthermore, since pi(D) = Bi, i = 1, 2, the filter D converges
to (a1, a2). The image filter d(D) is generated by the basis

{[α(1)
n + α(2)

n , β(1)
n + β(2)

n ] : n ∈ N}.
The sequential continuity of the operation addition implies that the increasing
sequence (α(1)

n + α
(2)
n )n∈N order converges to a1 + a2. Hence

a1 + a2 = sup
n∈N

(α(1)
n + α(2)

n ).

In a similar way for the decreasing sequence (β(1)
n + β

(2)
n )n∈N we have

a1 + a2 = inf
n∈N

(β(1)
n + β(2)

n ).

Therefore, the filter d(D) converges to a1 + a2 with respect to the convergence
structure λo on P , see (8). Hence the filter d(A), being finer than d(D), also
converges to a1 + a2. Thus the operation addition is continuous.
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The continuity of the scalar multiplication is proved by using similar arguments.
�

The next theorem gives a useful characterization of the Cauchy sequences on
the convergence vector space (P, λo).

Theorem 18. Let P be a given Archimedean vector lattice such that (P, λo) is
a convergence vector space and let ξ be a sequence on P . Then ξ is a Cauchy
sequence if and only if there exist a decreasing sequence β = (βn)n∈N such that

ξm − ξk ≤ βn, m, k ≥ n, n ∈ N, (11)
inf
n∈N

βn = O,

where O is the additive neutral element of the vector space P .

Proof. According to Definition 12, the sequence ξ is Cauchy if and only if the
filter 〈ξ〉− 〈ξ〉 converges to O. It is easy to see that the filter 〈ξ〉− 〈ξ〉 is generated
by the basis

{{ξm − ξk : m, k ≥ n} : n ∈ N}.
Let ξ be a Cauchy sequence. Then 〈ξ〉−〈ξ〉 ∈ λo(O) and one can easily obtain from
(8) that ξ is bounded. Then the existence of the sequence β follows from Theorem
16(ii). To prove the inverse implication we should note that the inequality (11) is
equivalent to

−βn ≤ ξm − ξk ≤ βn, m, k ≥ n, n ∈ N.

Then the fact that 〈ξ〉 − 〈ξ〉 converges to O follows directly from the definition of
λo, see (8). �

We should note that the characterization of Cauchy sequences in Theorem 18
coincides with the definition of order Cauchy sequence on a vector lattice which
is given in [16] [Chapter 4]. Clearly the concept of Cauchy sequence cannot be
formulated within the realm of sequences only. The definition in [16] is given
without any connection to a particular uniform structure. We believe that it is
a an advantage with regard to both clarity and applicability to use a concept
of Cauchy sequence given through the uniform convergence structure naturally
associated with a vector space convergence structure as is the approach adopted in
this paper.

4. Order convergence structure on C(X). Consider the set C(X) of all
continuous real functions defined on a given topological space X with a point-wise
defined partial order, that is, for f, g ∈ C(X)

f ≤ g ⇐⇒ f(x) ≤ g(x), x ∈ X. (12)
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Then (C(X), σo), where σo is the sequential convergence structure on C(X)
given by the order convergence with respect to the partial order (12), is a sequential
convergence space.

Let us note that any finite subset of C(X) has both supremum and infimum
which are respectively the point-wise supremum and infimum. Thus C(X) is a
lattice. However, the existence of supremum and infimum of infinite sets cannot be
guaranteed. In particular the supremum and infimum in the Definition 14 might
not exist. Furthermore, when the supremum and/or infimum exist they are not
necessarily equal to the point-wise supremum and/or infimum of the respective
sequences of functions as the later ones might not be continuous functions at all.
This is demonstrated on the following example which also shows that the order
convergence on C(X) is not point-wise.

Example 19. Take X = R with the usual topology on R and consider the sequence
of functions (ϕn)n∈N given by

ϕn(x) =

⎧⎨
⎩

1 − n|x| if x ∈ (− 1
n , 1

n

)

0 otherwise.
(13)

Let z denote the constant zero function, that is, z(x) = 0, x ∈ R. Then z is the
largest lower bound of the set {ϕn : n ∈ N} in C(R) with respect to the partial
order (12), that is, z = inf

n∈N

ϕn. Using also that (ϕn)n∈N is a decreasing sequence

and taking αn = z and βn = ϕn, n ∈ N, we obtain from Definition 14 that the
sequence (ϕn)n∈N order converges to z. Note that z is not a point-wise limit of
(ϕn)n∈N and that the point-wise limit is actually not a continuous function.

The above example shows that order convergence does not imply point-wise
convergence. The converse is also true, point-wise convergence does not imply
in general order convergence. However, under some assumptions for X, e.g. X
compact, and for certain classes of sequences, e.g. bounded sequences, point-wise
convergence implies order convergence.

We will show next that the order convergence on C(X) is not topological. As
mentioned already, the class of the convergent sequences in any topology satis-
fies the Urysohn property, see (3). The following example shows that the order
convergence on C(X) does not have the Urysohn property.

Example 20. Consider C(R). Let the rational numbers in the interval [0, 1] be
arranged in a sequence q1, q2, ... and let

ψn(x) = ϕn(x − qn), x ∈ R, n ∈ N,

where (ϕn)n∈N is the sequence given in (13). We will show that every subsequence
of the sequence (ψn)n∈N has a further subsequence which converges to the constant
zero function denoted by z. Let (ψnk

)k∈N be any subsequence of (ψn)n∈N. Since
the interval [0, 1] is a compact subset of R the sequence (qnk

)k∈N has a convergent
subsequence. Let the subsequence (qnki

)i∈N converge to q ∈ [0, 1]. Denote

εi = max{|qnkj
− q| : j ≥ i}, i ∈ N.
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Clearly the sequence (εi)i∈N is decreasing and converges to 0. Consider

βi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ q − εi − 1
i

1 + i(x − q + εi) if x ∈ (
q − εi − 1

i , q − εi

)

1 if x ∈ [q − εi, q + εi]

1 − i(x − q − εi) if x ∈ (
q + εi, q + εi + 1

i

)

0 if x ≥ q + εi + 1
i .

The sequence (βi)i∈N is decreasing and its infimum in C(R) is the constant zero
function z. Then the inequalities

0 ≤ ψnki
(x) ≤ βi(x), x ∈ R, i ∈ N,

imply that (ψnki
)i∈N order converges to z. Thus, an arbitrary subsequence of the

sequence (ψn)n∈N has a subsequence which converges to z. If the Urysohn property
is satisfied the sequence (ψn)n∈N should also converge to z. We will show that this
is not true. Let us assume that (ψn)n∈N order converges to z. Then according to
Definition 14 there exists a decreasing sequence (β̃n)n∈N on C(R) with an infimum
equal to z such that β̃n(x) ≥ ψn(x), x ∈ R, n ∈ N. Let n ∈ N. For any j ≥ n we
have

β̃n(qj) ≥ β̃j(qj) ≥ ψj(qj) = 1.

Since the set {qj : j ≥ n} is dense in the interval [0, 1] and the function βn is
continuous on R the above inequality implies that

β̃n(x) ≥ 1, x ∈ [0, 1], n ∈ N.

Therefore the infimum of the sequence (β̃n)n∈N is not the constant zero function
z. Hence the sequence (ψn)n∈N does not converge to z.

As shown by Example 20 it is not possible to have on C(X) a topology which
induces the order convergence. However, using the discussion in Section 3 we can
show that there exists a convergence structure on C(X) which induces the order
convergence and even construct such convergence structure. Indeed, since C(X) is
a real vector lattice with the point-wise defined addition and scalar multiplication
and order as given in (12), see [16] [Example 4.2(6)], it follows from Theorem
17 that (C(X), σo) is an FS-space. Hence, there exists a convergence structure
on C(X) which induces σo. Furthermore, using that C(X) is an Archimedean
vector lattice we have that (C(X), λo) is a convergence vector space, where the
convergence structure λo is given by (8) and induces σo.

It is shown in [5] [Proposition 3.6.5] that for a first countable convergence vec-
tor space the completeness and the sequential completeness are equivalent. Since
the convergence vector space (C(X), λo) is first countable it is sufficient to use se-
quential arguments with regard to its completeness. However we should recall that
the Cauchy sequences are defined through λo not just σo. Consider the following
example.
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Example 21. The sequence φ = (φn)n∈N on C(R) is given by

φn(x) =

⎧⎨
⎩

−1 if x ≤ − 1
n

nx if − 1
n < x < 1

n
1 if x ≥ 1

n .

The filter 〈φ〉 − 〈φ〉 is generated by the basis {{φm − φk : m, k ≥ n} : n ∈ N}. It is
easy to see that for any n ∈ N we have

−ϕn ≤ φm − φk ≤ ϕn, m ≥ n, k ≥ n,

where (ϕn)n∈N is the sequence given in (13). Since (ϕn)n∈N is a decreasing sequence
with infimum equal to the constant zero function z, (−ϕn)n∈N and (ϕn)n∈N are
sequences that can be associated with the filter 〈φ〉− 〈φ〉 in terms of the definition
of λo, see (8). Hence the filter 〈φ〉 − 〈φ〉 order converges to z, which implies that
φ = (φn)n∈N is a Cauchy sequence.

On the other hand it is quite clear that this sequence is not order convergent
in C(X).

Example 21 shows that the convergence vector space (C(X), λo) is not complete.
One of the main aims of the this paper is to construct a completion of the

convergence vector space (C(X), λo) as a set of functions defined on the same
domain X. Since the convergence structure λo is defined through the partial order
on C(X) it is natural to consider the Dedekind order completion of C(X). In
[2] the Dedekind order completion of C(X) was represented as a subset of the
set of all Hausdorff continuous functions H(X) discussed in the next section. It
was also shown that in the special case when X is a metric space the Dedekind
order completion of C(X) is exactly H(X). Let us note that the Dedekind order
completion of a poset does not give automatically a completion with respect to
any uniform convergence structure defined through the order. In fact it is shown
in [12] that convergence with respect to the order topology on the Dedekind order
completion of a poset does not imply convergence with respect to the order topology
on the original poset. Hence the results given in the sequel with regard to the
completion of C(X) through Hausdorff continuous functions are highly nontrivial.

5. The set of Hausdorff continuous functions. The Hausdorff continuous
functions are not unlike the usual real valued continuous functions. However, these
functions may assume interval values on a certain subset of the domain. Hence the
concept of Hausdorff continuity is formulated within the realm of interval valued
functions. Let IR denote the set of all finite closed real intervals, that is,

IR = {[a, a] : a ≤ a, a, a ∈ R}.

Given an interval a = [a, a] ∈ IR, w(a) = a − a is the width of a, while |a| =
max{|a|, |a|} is the modulus of a. An interval a is called proper interval, if w(a) > 0
and point interval, if w(a) = 0. Identifying a ∈ R with the point interval [a, a] ∈ IR,
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we consider R as a subset of IR. We denote by E(X) the set of all locally bounded
interval valued functions defined on the topological space X, that is,

E(X) = {f : X → IR, f -locally bounded}.

Since R ⊆ IR the set E(X) contains the set

E(X) = {f : X → R, f -locally bounded}

of all locally bounded real functions defined on X.
For every x ∈ X, Vx denotes the set of neighborhoods of x. The pair of mappings

I, S : E(X) → E(X) defined by

I(f)(x) = sup
V ∈Vx

inf{z ∈ f(y) : y ∈ V }, (14)

S(f)(x) = inf
V ∈Vx

sup{z ∈ f(y) : y ∈ V }. (15)

are called lower Baire, and upper Baire operators, respectively. Clearly for every
f ∈ E(X) we have

I(f)(x) ≤ z ≤ S(f)(x), z ∈ f(x), x ∈ X. (16)

Hence the mapping F : E(X) → E(X), called the graph completion operator,
where

F (f)(x) = [I(f)(x), S(f)(x)], x ∈ X, f ∈ E(X), (17)

is well defined and we have the inclusion

f(x) ⊆ F (f)(x), x ∈ X. (18)

Definition 22. A function f ∈ E(X) is called Hausdorff continuous, or H-contin-
uous, if for every g ∈ E(X) which satisfies the inclusion g(x) ⊆ f(x), x ∈ X, we
have F (g)(x) = f(x), x ∈ X.

The concepts of Hausdorff continuity is strongly connected with the concepts
of semi-continuity of real functions. We have the following characterization of the
fixed points of the lower and the upper Baire operators:

I(f) = f ⇐⇒ f is lower semi-continuous on X , (19)
S(f) = f ⇐⇒ f is upper semi-continuous on X . (20)

Let f ∈ E(X). For every x ∈ X the value of f is an interval [f(x), f(x)]. Hence,
the function f can be written in the form f = [f, f ], where f, f ∈ E(X) and f ≤ f .
The lower and upper Baire operators as well as the graph completion operator of
an interval valued function f = [f, f ] ∈ E(X) can be conveniently represented in
terms of the functions f and f :

I(f) = I(f) , S(f) = S(f) , F (f) = [I(f), S(f)].
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We have the following characterization of the H-continuous functions, see [2]:

f = [f, f ] is H-continuous ⇐⇒

⎧⎪⎨
⎪⎩

f is upper semi-continuous
f is lower semi-continuous

f = F (f) = F (f).

(21)

The concept of H-continuity can be considered as a generalization of the concept
of continuity of real functions in the sense that the only real (point valued) functions
contained in H(X) are the continuous functions, that is,

f ∈ E(X)
f is H-continuous

}
=⇒ f is continuous. (22)

With every function f ∈ E(X) one can associate Hausdorff continuous functions
as stated in the following theorem, [2], [14].

Theorem 23. Let f ∈ E(X). Then both functions F (S(I(f))) and F (I(S(f)))
are H-continuous.

A partial order which extends the total order on R can be defined on IR in
more than one way. However, it proves useful to consider on IR the partial order
≤ defined by

[a, a] ≤ [b, b] ⇐⇒ a ≤ b, a ≤ b. (23)

The partial order induced on E(X) by (23) in a point-wise way, i.e.,

f ≤ g ⇐⇒ f(x) ≤ g(x), x ∈ X, (24)

is an extension of the usual point-wise order on the set of real valued functions
E(X). Note that the Baire operators and the graph completion operator are all
monotone increasing with respect to the order (24), that is, for f, g ∈ E(X) we
have

f ≤ g =⇒ ( I(f) ≤ I(g), S(f) ≤ S(g), F (f) ≤ F (g) ) . (25)

We denote by H(X) the set of all Hausdorff continuous interval valued functions
defined on X. The partial order (24) induces on H(X) a sequential convergence
structure σo as shown in Section 3. An important property of the set H(X) is that
it is Dedekind order complete with respect to the partial order (24), see [2]. Using
the Dedekind order completeness of H(X) the order convergence can be defined on
H(X) in the following equivalent way. A sequence (fn)n∈N ⊂ H(X) order converges
to f ∈ H(X) if and only if it is bounded and we have

f = liminf fn = sup
n∈N

inf{fm : m ≥ n},
(26)

f = limsup fn = inf
n∈N

sup{fm : m ≥ n}.

We should note that the infima and suprema in the above statement are defined
through the order (24) on H(X) and are not the point-wise ones. They all exist
since the sequence is bounded and the set H(X) is Dedekind order complete. The
following theorem gives a usefull characterization of the infima and suprema on
H(X) in terms of the point-wise ones.
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Theorem 24. Let F be a bounded subset of H(Ω) and let the functions
ϕ,ψ ∈ E(X) be defined by

ϕ(x) = inf{f(x) : f = [f, f ] ∈ F} , ψ(x) = sup{f(x) : f = [f, f ] ∈ F} , x ∈ X.

Then
inf F = F (I(ϕ)), supF = F (S(ψ)).

Furthermore if the set F is finite then

inf F = F (ϕ), supF = F (ψ).

The proof is given in [2] [Proof of Theorem 5].
The set H(X) is a lattice with respect to the partial order given in (24). Hence

(H(X), σo), where σo is given in (4), is a sequential convergence space. However,
since H(X) is not a vector lattice, to show that (H(X), σo) is an FS-space we cannot
use the same approach as for the space (C(X), σo). The next theorem shows that,
under some very general assumption for X, (H(X), σo) is an FS-space.

Theorem 25. For any completely regular topological space X the sequential con-
vergence space (H(X), σo) is an FS-space.

The proof is similar to the proof of the corresponding statement in Theorem 17,
this time using Lemma 37 instead of the respective result in [9].

From the above theorem and Theorem 7 it follows that, if the topological space
X is completely regular, the sequential convergence structure σo on H(X) is induced
by a convergence structure on H(X). Furthermore, using also Theorem 16 we
obtain that the mapping λo given in (8) is a convergence structure on H(X) which
induces σo. The convergence space (H(X), λo) will play an important role in the
construction of the convergence vector space completion of (C(X), λo).

6. Convergence vector space completion of C(X). In the two convergence
spaces (C(X), λo) and (H(X), λo) the meaning of the symbol λo is different and
needs to be considered in the respective context, e.g. in (C(X), λo) the domain of
the mapping denoted by λo is C(X) while in (H(X), λo) the domain of the mapping
denoted by λo is H(X). Since in this section we will consider an interplay between
the two convergence spaces, to avoid possible confusion we will denote the order
convergence structure on C(X) by λc and the order convergence structure on H(X)
by λh. Similarly, for the respective sequential order convergence structures we will
use the notations σc for the sequential order convergence structure on C(X) and σh

for the sequential order convergence structure on H(X). The suprema and infima
in this section are all considered in the set H(X). Since C(X) is a sublattice of
H(X), the infimum or supremum in C(X) of a subset of C(X), if exists, coincides
with the respective infimum or supremum in H(X).

Our aim is to show that the convergence space (H(X), λh) is the completion
of the convergence vector space (C(X), λc). For the underlying sets we have the
inclusion

C(X) ⊆ H(X).
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The first question is if the convergence structure λh is an extension of the con-
vergence structure λc, or equivalently, if λc is the subspace convergence structure
induced by λh on C(X). In addressing this issue the next theorem is instrumental.
Since this theorem holds only when X is a metric space, the completion of C(X)
will be characterized in this section under the additional assumption of X being a
metric space.

Theorem 26. Let X be a metric space. Then for every function f ∈ H(X) there
exists an increasing sequence (ξn)n∈N on C(X) and a decreasing sequence (ηn)n∈N

on C(X) such that

f = sup
n∈N

ξn = inf
n∈N

ηn.

The proof is based on a construction used in proving similar result for lower and
upper semi-continuous functions and also used in [2] [Theorem 11]. For complete-
ness of the exposition the proof is given in the Appendix. Using Theorem 26 we
prove the following result.

Theorem 27. Let X be a metric space.
a) For every increasing sequence ξ = (ξn)n∈N on H(X) which is bounded from
above there exists an increasing sequence α = (αn)n∈N on C(X) such that

αn ≤ ξn, n ∈ N, and sup
n∈N

ξn = sup
n∈N

αn.

b) For every decreasing sequence η = (ηn)n∈N on H(X) which is bounded from
below there exists a decreasing sequence β = (βn)n∈N on C(X) such that

βn ≥ ηn, n ∈ N, and inf
n∈N

ηn = inf
n∈N

βn.

Proof. We will only give the proof of a) because b) is proved in a similar way. It
follows from Theorem 26 that for every n ∈ N there exist an increasing sequence
(pnm)m∈N on C(X) such that

ξn = sup
m∈N

pnm .

Denote
αn = sup{p1n, p2n, ..., pnn} , n ∈ N .

For every n ∈ N, αn is a supremum of a finite set of continuous functions. Hence
it equals their point-wise supremum and is a continuous function, that is, αn ∈
C(X). Using Lemma 36 we obtain that (αn)n∈N is an increasing sequence and
sup
n∈N

ξn = sup
n∈N

αn. �

Denote by e : C(X) → H(Ω) the inclusion mapping, that is, e(f) = f , f ∈
C(X). The subspace convergence structure induced by λh on C(X) is defined as
follows:
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A filter A on C(X) converges to f ∈ C(X) if and only if e(A) ∈ λh(f).

Note that the image filter e(A) is actually a filter on H(Ω) which is generated by
A considered as a subset of the power set of H(Ω).

Theorem 28. Let X be a metric space. Then, the convergence structure λc is the
subspace convergence structure induced by λh on C(X), that is, for any filter A
on C(X) and f ∈ C(X)

A ∈ λc(f) ⇐⇒ e(A) ∈ λh(f).

Proof. The implication to the right follows directly from the definitions of λc

and λh, see (8). We will prove the implication to the left. Let the filter A on
C(X) and f ∈ C(X) be such that e(A) ∈ λh(f). Then there exist (α̃n)n∈N an
increasing sequence on H(X) and (β̃n)n∈N a decreasing sequence on H(X) with
f = supn∈N α̃n = infn∈N β̃n which can be associated with e(A) in terms of (8).
Let us note that the sets represented through the interval notation in (8) depend
on the poset P . Since here we consider both P = C(X) and P = H(X) to avoid
possible confusion we will write the respective sets in an explicit form. In terms of
(8) the filter B on H(X) is generated by a basis of the form {{φ ∈ H(X) : α̃n ≤
φ ≤ β̃n} : n ∈ N} and is coarser then e(A).

Using Theorem 27 there exist sequences (αn)n∈N and (βn)n∈N on C(X) such
that

αn ≤ α̃n βn ≥ β̃n n ∈ N (27)
sup
n∈N

αn = inf
n∈N

βn = f.

We will show that the sequences (αn)n∈N and (βn)n∈N can be associated with the
filter A and the function f in terms of the definition of λc, see (8). To this end it
remains to prove that the filter generated by the basis

{{φ ∈ C(X) : αn ≤ φ ≤ βn} : n ∈ N} (28)

is coarser then the filter A. It is sufficient to show that every set in the basis given
in (28) above is a superset of a set in A. Since the filter e(A) is generated by A
and using that the filter B is coarser than e(A), for every n ∈ N there exists a set
A ∈ A such that

A ⊂ {φ ∈ H(X) : α̃n ≤ φ ≤ β̃n}.
Using that A is a subset of C(X), and the inequalities (27) we obtain

A ⊂ {φ ∈ C(X) : α̃n ≤ φ ≤ β̃n} ⊂ {φ ∈ C(X) : αn ≤ φ ≤ βn}.
Hence the filter generated by the basis (28) is coarser than A.

Now all conditions in the definition of λc as given in (8) with regard to the filter
A and the function f are satisfied which implies that A ∈ λc(f). �

The next theorem shows that the Cauchy sequences on (C(X), λc) converge on
(H(X), λh).
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Theorem 29. For every Cauchy sequence ξ on the convergence vector space
(C(X), λc) there exists f ∈ H(X) such that ξ ∈ λh(f).

Proof. Let ξ be a Cauchy sequence. According to Theorem 18 there exist a
decreasing sequence β = (βn)n∈N on C(X) such that

ξm − ξk ≤ βn, m, k ≥ n, n ∈ N, (29)
z = sup

n∈N

αn = inf
n∈N

βn, (30)

where z is the constant zero function. Since a Cauchy sequence is order bounded
and H(X) is Dedekind order complete we can define the Haudorff continuous func-
tions

f = [f, f ] = liminf ξ , g = [g, g] = limsup ξ .

To prove the theorem we need to show that f = g, see (26). From the inequality
(29) we have

ξm ≤ ξk + βn, m, k ≥ n, n ∈ N.

Going with m to infinity we obtain

g = limsup ξ ≤ ξk + βn, k ≥ n, n ∈ N. (31)

It is easy to see that the interval function

g − βn = [g − βn, g − βn]

is Hausdorff continuous and that the inequality (31) implies

g − βn ≤ ξk, k ≥ n, n ∈ N.

Taking limit inferior as k → ∞ we obtain

g − βn ≤ liminf ξ = f, n ∈ N,

which also implies
g − f ≤ βn, n ∈ N.

Using the monotonicity of the operators S and F and that βn ∈ C(X) we have

F (S(g − f)) ≤ F (S(βn)) = βn, n ∈ N.

Since F (S(f − g)) is a Hausdorff continuous function, see Theorem 23 and (19),
which is a lower bound of (βn)n∈N then

F (S(g − f)) ≤ inf
n∈N

βn = z

or equivalently
F (S(g − f))(x) ≤ 0 , x ∈ X.

Therefore
g(x) − f(x) ≤ S(g − f)(x) ≤ 0 , x ∈ X ,
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which implies
g ≤ f.

From the above inequality using (21) and the monotonicity of F we obtain

g = F (g) ≤ F (f) = f.

Since the inequality f ≤ g is obvious the above implies that f = g which completes
the proof. �

We show next that C(X) is dense in H(X).

Theorem 30. For every function f ∈ H(X) there exists a Cauchy sequence ξ on
the convergence vector space (C(X), λc) such that ξ → f in the convergence space
(H(X), λh).

Proof. Let f ∈ H(X). According to Theorem 26 there exists an increasing
sequence ξ on C(X) such that sup

n∈N

ξn = f . It is easy to see that ξ order converges

to f . Indeed, for the two sequences α and β required in Definition 14 we can take
α = ξ and β the constant sequence with value f .

To complete the proof it remains to show that the sequence ξ is a Cauchy
sequence in the space (C(X), λc). It follows from Theorem 26 that there exists
a decreasing sequence η = (ηn)n∈N such that f = inf

n∈N

ηn. Clearly the sequence

(ηn − ξn)n∈N is decreasing and bounded from below by the constant zero function
z. Furthermore, we can see that

inf
n∈N

(ηn − ξn) = z.

Indeed, assume that φ ∈ C(X) is a lower bound of (ηn − ξn)n∈N. Then we have

βm ≥ ξk + φ , m, k ∈ N,

which implies
f = inf

m∈N

ηm ≥ ξk + φ , k ∈ N.

Using that the function f − φ = [f − φ, f − φ] is Hausdorff continuous and the
inequality

f − φ = [f − φ, f − φ] ≥ f − φ ≥ ξk , k ∈ N,

we obtain
[f − φ, f − φ] ≥ sup

k∈N

ξk = f = [f, f ].

It follows from the above inequality that φ ≤ z. Therefore z is the infimum of the
sequence (ηn − ξn)n∈N.

We also have

ξm − ξk ≤ ηm − ξk ≤ ηn − ξn , m, k ≥ n, n ∈ N.
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Then the fact that ξ is a Cauchy sequence follows from Theorem 18. �

In order to show that H(X) is a convergence space completion of C(X) we
need to introduce on H(X) the operations of a vector space and show that H(X)
is a complete convergence vector space with regard to these operations and the
convergence structure λh. We will define on H(X) the operations addition and
scalar multiplication by extending the respective operations on C(X) using that
C(X) is dense in H(X), see Theorem 30.

Definition 31. Let f, g, h ∈ H(X). We say that h = f+g if there exists sequences
ξ and η on C(X) such that ξ → f , η → g and ξ + η → h.

The fact that the addition given above is defined for every two functions f, g ∈
H(X) follows directly from Theorems 29 and 30. Indeed, according to Theorem
30, for any functions f, g ∈ H(X) there exists sequences ξ and η such that ξ → f ,
η → g. Using that ξ and η are Cauchy it is easy to see that ξ + η is also Cauchy.
Then it follows from Theorem 29 that there exists h ∈ H(X) such that ξ + η → h.

We also need to show that the definition of addition does not depend on a
particular choice of the sequences ξ and η. Let us assume that the sequences
ξ(i), η(i), i = 1, 2, are such that ξ(i) → f , η(i) → g, i = 1, 2. We will show that
ξ(1) + η(1) and ξ(2) + η(2) converge to the same limit. Consider the trivial mixtures
ξ = ξ(1) � ξ(2) and η = η(1) � η(2). Since H(X) is an FS-space, see Theorem 25, we
have ξ → f and η → g. Clearly the sequences ξ(1) + η(1) and ξ(2) + η(2) are both
subsequences of the Cauchy sequence ξ+η. Hence they converge to the same limit,
namely, the limit of ξ + η.

The addition on H(X) can be characterized in the following equivalent way

h = f + g ⇐⇒
{

For every two sequences ξ and η on C(X),
where ξ → f , η → g, we have ξ + η → h.

(32)

It is important to mention here that the operation addition given in Definition
31 is different from the point-wise addition of Hausdorff continuous interval func-
tions, since it is well known that point-wise sum of f, g ∈ H(X) using the usual
addition of intervals, see [1], is not necessarily a Hausdorff continuous function.
This is also illustrated by the following example.

Example 32. Consider the functions f, g ∈ H(R) given by

f(x) =

⎧⎪⎨
⎪⎩

0, if x < 0,

[0, 1], if x = 0,

1, if x > 0;

g(x) =

⎧⎪⎨
⎪⎩

0, if x < 0,

[−1, 0], if x = 0,

−1, if x > 0.
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Using addition of intervals we have

f(x) + g(x) =

⎧⎪⎨
⎪⎩

0, if x < 0,

[−1, 1], if x = 0,

0, if x > 0.

We can obtain the sum with respect to the addition given in Definition 31 by using
the following sequence of continuous functions:

ξn(x) =

⎧⎪⎨
⎪⎩

0, if x ≤ 0,

nx, if 0 < x ≤ 1
n

1, if x > 1
n .

It is easy to see that ξ → f while −ξ → g. Therefore f +g, being the limit of ξ− ξ,
is the constant zero function.

The operation of scalar multiplication is defined as follows.

Definition 33. Let f, g ∈ H(X) and a ∈ R. Then we say that g = af if there
exist a sequence ξ on C(X) such that ξ → f and aξ → g.

Similar to the operation addition we show that scalar multiplication is defined for
all f ∈ H(X) and all a ∈ R. However, in this case the operation coincides exactly
with the respective point-wise operation. More precisely, for any f = [f, f ] and
a ∈ R we have

(af)(x) = a(f(x)) =
{

[af(x), af(x)], if a ≥ 0
[af(x), af(x)], if a < 0.

Theorem 34. The convergence space (H(X), λh) is a complete convergence vector
space with respect to the operations given in Definitions 31 and 33.

Proof. First we need to show that H(X) is a vector lattice with respect to the given
operations and the partial order ≤ given in (24). However, the verification of the
respective axioms uses standard techniques and will be omitted. It is also an easy
exercise to see that the vector lattice H(X) is Archimedean. We proceed by showing
that (H(X), λh) is a convergence vector space. To this end we apply Theorem 17.
Since (H(X), σh) is an Archimedean vector lattice it follows that (H(X), λh) is a
convergence vector space. Finally we will show that the convergence vector space
(H(X), λh) is complete by using the Dedekind order completeness of H(X). Since
the convergence space (H(X), λh) is first countable sequential argument is sufficient
with regard to its completeness, see [5] [Proposition 3.6.5]. Let ξ = (ξn)n∈N be a
Cauchy sequence on H(X). According to Theorem 18 there exists a decreasing
sequence β = (βn)n∈N with inf

n∈N

βn = z, z being the constant zero function, such

that
ξm − ξk ≤ βn, m, k ≥ n, n ∈ N.
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Since m and k can vary independently the above inequality yields

limsup ξ − liminf ξ ≤ βn, n ∈ N.

Therefore
limsup ξ − liminf ξ ≤ inf

n∈N

βn = z,

or, equivalently,
limsup ξ = liminf ξ.

Let f = limsup ξ = liminf ξ. Then the sequence ξ and the function f satisfy the
condition (26) which implies that ξ order converges to f . Hence (H(X), λh) is a
complete convergence vector space. �

Summarizing the results presented in this section we can say that (H(X), λh)
is a convergence vector space completion of (C(X), λc) in the following very direct
sense

• (H(X), λh) is a complete convergence vector space, see Theorem 34;

• (C(X), λc) is a convergence vector subspace of (H(X), λh) meaning that both
the convergence structure and the operations on C(X) are the ones induced
by (H(X), λh), see Theorem 28 and Definitions 31, 33;

• C(X) is dense in H(X), see Theorem 30, so that no proper complete conver-
gence subspace of (H(X), λh) contains C(X).

Remark 35. The operations addition and scalar multiplication given in Defini-
tions 31 and 33 introduced on H(X) the structure of a vector space. The defi-
nitions of these operations were formulated in order to satisfy a particular need,
namely, continuous extension of the respective operations on C(X). It is interest-
ing therefore that these operations coincide with the operations addition and scalar
multiplication defined in [3] in a completely different way for the case when X is
an open subset of R

d. It was shown in [3] that, under certain assumptions, this is
the only way to define the vector space operations on H(X) and that H(X) is the
largest vector space of interval functions.

7. Conclusion. This paper brings together three concepts which have not been
related so far, namely, the concept of order convergence, the concept of convergence
space and the concept of Hausdorff continuous functions. The general result that
the order convergence on any vector lattice is induced by a convergence structure
given in Section 3 is particularly significant in view of the fact that the order con-
vergence is typically not induced by a topology. The primary focus is on the vector
lattice C(X). The order convergence on C(X) is indeed not topological as it vio-
lates the Urysohn property and the diagonal property which are associated with a
topologically induced convergence, thus justifying our interest in the convergence
vector space (C(X), λo), where the convergence structure λo induces the order
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convergence. A uniform structure, including the concept of Cauchy sequences, is
induced in a natural way through the vector space operations on any convergence
vector space, in particular on (C(X), λo) as well. However, the convergence vector
space (C(X), λo) is not complete. The main result in this regard is that the com-
pletion of (C(X), λo) can be given through the larger set of Hausdorff continuous
functions H(X). Within this construction we define operations on H(X) which
induce on H(X) the structure of a vector space, a result which is quite remarkable
particularly in view of the fact that no set of interval functions which includes
proper interval functions is a vector space with respect to the point-wise defined
operations. The convergence vector space (H(X), λo) may have many applications
due to its completeness. An application of the set H(X) to the solution of nonlinear
PDEs through the order completion method which uses its Dedekind completeness
was reported in [4]. Further research will seek applications to the solution of PDE
by using the order convergence structure on H(X).

Appendix. This appendix contains some technical results used in the main body
of the paper. The lemma below is useful as a substitute for the diagonal property of
the sequential convergence which does not hold in general for the sequential order
convergence structure σo on a poset.

Lemma 36. Let P be lattice with respect to a given partial order ≤.
a) Let for every n ∈ N the sequence (pnm)m∈N on P be increasing and let

ξn = sup
m∈N

pnm, n ∈ N,

exist. If the sequence (ξn)n∈N is increasing and sup
n∈N

ξn exists then the sequence

(αn)n∈N, where
αn = sup{p1n, p2n, ..., pnn}, n ∈ N,

is also increasing, sup
n∈N

αn exists and sup
n∈N

αn = sup
n∈N

ξn.

b) Let for every n ∈ N the sequence (qnm)m∈N on P be decreasing and let

ηn = inf
m∈N

qnm, n ∈ N,

exist. If the sequence (ηn)n∈N is decreasing and supn∈N ηn exists then the sequence
(βn)n∈N where

βn = inf{q1n, q2n, ..., qnn}, n ∈ N,

is also decreasing, inf
n∈N

βn exists and inf
n∈N

βn = inf
n∈N

ηn.

Proof. a) Let the sequence (ξn)n∈N be increasing and let f = sup
n∈N

ξn. Using the

monotonicity of the sequences (pnm)m∈N, n ∈ N, we have

αn = sup{p1n, p2n, ..., pnn} ≤ sup{p1 n+1, p2 n+1, ..., pn n+1}
≤ sup{p1 n+1, p2 n+1, ..., pn n+1, pn+1 n+1} = αn+1
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which implies that the sequence (αn)n∈N is increasing. We will show next that
(αn)n∈N is bounded and f = sup

n∈N

αn. Since for k ≤ n we have pkn ≤ ξk ≤ ξn then

αn ≤ ξn ≤ f , n ∈ N. (33)

Hence f is and upper bound of (αn)n∈N. Let g be any upper bound of (αn)n∈N.
We will show that f ≤ g which implies that f = sup

n∈N

αn. It is easy to see that

pkm ≤ g, k,m ∈ N. Indeed,

if k ≤ m then pkm ≤ αm ≤ g;

if k > m then pkm ≤ pkk ≤ αk ≤ g.

Therefore
ξk = sup

m∈N

pkm ≤ g, k ∈ N.

Hence
f = sup

k∈N

ξk ≤ g

which implies f = sup
n∈N

αn.

b) is proved in a similar way. �

The lemma below is used in the proof of Theorem 25. Note that all infima and
suprema are in terms of the partial order (24) on H(X) and are generally different
from the point-wise ones.

Lemma 37. a) Let
(
α

(1)
n

)
n∈N

and
(
α

(2)
n

)
n∈N

be increasing sequences on H(X)

and f ∈ H(X). If

f = sup
n∈N

α(1)
n = sup

n∈N

α(2)
n

then

f = sup
n∈N

inf{α(1)
n , α(2)

n }.

b) Let
(
β

(1)
n

)
n∈N

and
(
β

(2)
n

)
n∈N

be decreasing sequences on H(X) and f ∈
H(X). If

f = inf
n∈N

β(1)
n = inf

n∈N

β(2)
n

then

f = inf
n∈N

sup{β(1)
n , β(2)

n }.
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Proof. We will only proof a) since b) is proved in a similar way. Denote αn =
inf{α(1)

n , α
(2)
n }, n ∈ N. Assume the opposite, that is, supn∈N αn �= f . This means

that there exists an upper bound φ = [φ, φ] ∈ H(X) of the set {αn : n ∈ N} such
that the inequality φ ≥ f is false. Without loss of generality we may assume that
φ ≤ f because if this is not the case we can use inf{φ, f} in the place of φ. Since
φ �= f there exists a ∈ X such that φ(a) < f(a). Indeed, if φ(x) ≥ f(x) for every
x ∈ X then using (21) and the monotonicity of the operator F , see (25) we have

φ = F (φ) ≥ F (f) = f,

which is a contradiction since the above inequality is assumed false. Using that the
function f − φ is lower semi continuous on X there exists an open neighborhood
V of a such that

f(x) − φ(x) > ε, x ∈ V,

where ε = 1
2 (f(a) − φ(a)) > 0. Using the usual interval notations for every n ∈ N

we have α
(1)
n = [α(1)

n , α
(1)
n ] and α

(2)
n = [α(2)

n , α
(2)
n ]. Denote

M (1) = {x ∈ X : α(1)
n (x) − φ(x) ≤ 0, n ∈ N}

M (2) = {x ∈ X : α(2)
n (x) − φ(x) ≤ 0, n ∈ N}.

Due to the fact that the functions involved in the inequalities defining the sets
M (1) and M (2) are both lower semi-continuous on X both sets are closed in the
topology of X. It is easy to see that X = M (1)

⋃
M (2). Indeed, if x /∈ M (1)

⋃
M (2)

there exist m1 and m2 such that α
(1)
m1(x) > φ(x) and α

(2)
m2(x) > φ(x). Let m ≥

max{m1,m2}. Then

α(1)
m (x) ≥ α(1)

m1
(x) > φ(x)

α(2)
m (x) ≥ α(2)

m2
(x) > φ(x).

It follows from Theorem 24 that the function αm is a point-wise infimum of the
functions α

(1)
m and α

(2)
m . Hence we have

αm(x) = inf{α(1)
m , α(2)

m } > φ(x),

which is a contradiction because φ is an upper bound of αm. Therefore X =
M (1)

⋃
M (2).

We shall see next that at least one of the sets V
⋂

M (1) and V
⋂

M (2) has an
interior point. Let V

⋂
M (1) have no interior points. This means that every point

y ∈ V
⋂

M (1) is an accumulation point of M (2). Using that M (2) is closed, this
implies y ∈ M (2). Hence V

⋂
M (1) ⊆ M (2). Therefore

V = (V
⋂

M (1))
⋃

(V
⋂

M (2)) ⊆ M (1)
⋃

M (2) = M (2),

where the set V , being an open set, certainly contains interior points.
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Let b be an interior point of V
⋂

M (l) where l = 1 or l = 2. There exists an
open neighborhood U of b such that U ⊆ V

⋂
M (l). Due to the complete regularity

of X there exists a continuous function ψ on X such that

ψ(b) = 1
0 ≤ ψ(x) ≤ 1, x ∈ U

ψ(x) = 0, x /∈ U.

Now the function g = f − εψ ∈ H(X) is an upper bound of the sequence
(α(l)

n )n∈N. Indeed, for x ∈ U and using that U ⊆ V
⋂

M (l) we have

g = f(x) − εψ(x) ≥ f(x) − ε > φ(x) ≥ α(l)
n (x), n ∈ N.

For x /∈ U ,
g = f(x) − εψ(x) = f(x) ≥ α(l)

n (x), n ∈ N.

Hence, using (21) and the monotonicity of the operator F , see (25), we obtain

g = F (g) ≥ F (α(l)
n ) = α(l)

n ,

which implies that g = f − εψ is an upper bound of (α(l)
n )n∈N. However the in-

equality g(x) ≥ f(x) is false at least at x = b. This is a contradiction with the fact
that f = sup

n∈N

α
(l)
n and shows that sup

n∈N

αn = f . �

Proof of Theorem 26. We will prove the existence of an increasing sequence since
the existence of a decreasing one is proved in a similar way. Let ρ be the metric
on X. We will use the function h : R → (−1, 1) ⊂ R defined by

h(z) =
z

1 + |z| , z ∈ R.

This real function is continuous and strictly increasing. The inverse function h−1 :
(−1, 1) → R is given by

h−1(z) =
z

1 − |z| , z ∈ (−1, 1),

and is also continuous and strictly increasing.
Let f = [f, f ] ∈ H(X). Consider the functions ϕn : X × X → R defined by

ϕn(t, x) = h(f(t)) + nρ(t, x) =
f(t)

1 + |f(t)| + nρ(t, x), n ∈ N. (34)

It is easy to see that the function ϕn is bounded from below. Indeed, since the
value of the metric ρ is always nonnegative and the fraction in (34) is greater than
-1 we have ϕn(t, x) > −1. Then, we can define

ψn(x) = inf{ϕn(t, x) : t ∈ X}, n ∈ N.
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First we will show that for every n ∈ N the function ψn is continuous on X. From
the triangular inequality of the metric ρ for every x, y, t ∈ X we have

ρ(t, y) − ρ(x, y) ≤ ρ(t, x) ≤ ρ(t, y) + ρ(x, y).

Therefore
ϕn(t, y) − nρ(x, y) ≤ ϕn(t, x) ≤ ϕn(t, y) + nρ(x, y).

Taking the infimum on t ∈ X we obtain

ψn(y) − nρ(x, y) ≤ ψn(x) ≤ ψn(y) + nρ(x, y).

Hence we have the inequality

|ψn(x) − ψn(y)| ≤ nρ(x, y) , x, y ∈ X ,

which implies that the function ψn is continuous on X.
Our second step is to prove that ψn satisfies the inequalities

−1 < ψn(x) ≤ f(x)
1 + |f(x)| < 1, x ∈ X. (35)

For every x ∈ X we have

ψn(x) = inf{ϕ(t, x) : t ∈ X} ≤ ϕ(x, x) = h(f(x)) =
f(x)

1 + |f(x)| . (36)

Furthermore, since −1 is a lower bound of ϕn(t, x) the inequality

ψn(x) ≥ −1

also holds. It remains to prove that ψn(x) �= −1. Let us assume that there exists
x ∈ X such that ψn(x) = −1. Let the real number µ be such that −1 < µ <

f(x)

1+|f(x)| . Then we have

h(f(x)) =
f(x)

1 + |f(x)| > µ > −1.

Using standard techniques one can easily see that the function h ◦ f is lower semi-
continuous. Hence there exists ε > 0 such that

f(t)
1 + |f(t)| = h(f(t)) > µ whenever ρ(t, x) < ε. (37)

Let now δ = min{nε, µ + 1}. Since ψn(x) is defined as an infimum on t ∈ X,
there exists tδ ∈ X such that

−1 = ψn(x) ≤ ϕn(tδ, x) ≤ ψn(x) + δ = −1 + δ
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or, more precisely,

−1 ≤ f(tδ)
1 + |f(tδ)| + nρ(tδ, x) ≤ −1 + δ.

Using simple manipulations we obtain

0 ≤ ρ(tδ, x) ≤ 1
n

(
δ −

(
1 +

f(tδ)
1 + |f(tδ)|

))
<

δ

n
≤ ε (38)

−1 ≤ f(tδ)
1 + |f(tδ)| ≤ −1 + δ ≤ µ. (39)

The contradiction between inequalities (38), (39) on the one side and the con-
dition (37) on the other side show that the assumption that ψn(x) = −1 for some
x ∈ X is false. Therefore ψn(x) > −1, x ∈ X.

We will show that (ξn)n∈N where

ξn(x) = h−1(ψn(x)) =
ψn(x)

1 − |ψn(x)| , x ∈ X, n ∈ N, (40)

is the required sequence. Due to inequalities (35) the function ξn is well defined
for every x ∈ X and n ∈ N. Moreover, ξn is continuous on X because ψn is
continuous on X. Using the fact that the function h−1 is strictly increasing on the
interval (−1, 1) and that the sequence (ϕn)n∈N is increasing with n we obtain that
(ξn)n∈N is an increasing sequence. Furthermore from the middle inequality in (35)
we obtain

ξn(x) = h−1(ψn(x)) ≤ h−1

(
f(x)

1 + |f(x)|
)

= h−1
(
h(f(x)

)
= f(x) ≤ f(x), x ∈ X, n ∈ N.

It remains to prove that f = sup
n∈N

ξn. We will show first that f is the point-wise

supremum of the sequence (ξn)n∈N, that is,

f(x) = sup
n∈N

(ξn(x)), x ∈ X. (41)

Let x ∈ X and let ε > 0 be arbitrary. Using that the function h ◦ f is lower semi-
continuous there exists ν > 0 such that h(f(t)) > h(f(x))− ε whenever ρ(t, x) < ν.

Let m ∈ N be such that m ≥ h(f(x)) − ε + 1
ν

. It is easy to see that

ϕn(t, x) ≥ h(f(x)) − ε , t ∈ X, n ≥ m. (42)
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Indeed,

if ρ(t, x) ≥ ν then ϕn(t, x) > −1+nν ≥ −1+
h(f(x)) − ε + 1

ν
ν = h(f(x))−ε;

if ρ(t, x) < ν then ϕn(t, x) ≥ h(f(x)) − ε + nρ(t, x) ≥ h(f(x)) − ε.

Using (42) for n ≥ m we have

ψn(x) = inf
t∈X

ϕn(t, x) ≥ h(f(x)) − ε.

Therefore
sup
n∈N

(ψn(x)) ≥ h(f(x)) − ε.

Since ε in the above inequality is arbitrary and using also (36) we obtain

sup
n∈N

(ψn(x)) = h(f(x)).

The function h−1 used in the definition of ξn, see (40), is continuous and strictly
increasing. Then we have

sup
n∈N

(ξn(x)) = sup
n∈N

(h−1(ψn(x))) = h−1 sup
n∈N

(ψn(x)) = h−1(h(f(x))) = f(x),

which proves (41). Finally using Theorem 24 and (21) it follows from (41) that

sup
n∈N

ξn = F (S(f)) = F (f) = f.

This completes the proof. �
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